1
|
Ruiz-Llacsahuanga B, Sanchez-Tamayo M, Kumar GD, Critzer F. Comparison of Three Air Sampling Methods for the Quantification of Salmonella, Shiga-toxigenic Escherichia coli (STEC), Coliforms, and Generic E. coli from Bioaerosols of Cattle and Poultry Farms. J Food Prot 2024; 87:100282. [PMID: 38663638 DOI: 10.1016/j.jfp.2024.100282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 05/12/2024]
Abstract
Recent fresh produce outbreaks potentially associated with bioaerosol contamination from animal operations in adjacent land highlighted the need for further study to better understand the associated risk. The purpose of this research was to evaluate three sampling methods for quantifying target bacterial bioaerosols from animal operations. A dairy cattle and poultry farm located in Georgia, U.S. were visited six times each. Air was collected for 10 min using: 2-stage Andersen impactor with and without mineral oil overlay and impingement samplers. Sampling devices were run concurrently at 0.1, 1, and 2 m heights (n = 36). Andersen samplers were loaded with CHROMagar™ Salmonella, CHROMagar™ STEC, or Brilliance™ coliforms/E. coli. The impingement sampler contained buffered peptone water (20 mL) which was vacuum filtered through a 0.45 µm filter and placed onto the respective media. Plates were incubated at 37 ℃ for 48 h. PCR confirmation followed targeting ttr for Salmonella and stx1, stx2, and eae genes for STEC. No significant differences were found among methods to quantify coliforms and E. coli. Salmonella and STEC bioaerosols were not detected by any of the methods (Limit of detection: 0.55 log CFU/m3). E. coli bioaerosols were significantly greater in the poultry (2.76-5.00 log CFU/m3) than in the cattle farm (0.55-2.82 log CFU/m3) (p < 0.05), and similarly distributed at both stages in the Andersen sampler (stage 1:>7 μm; stage 2: 0.65-7 μm particle size). Sampling day did not have a significant effect on the recovery of coliforms/E. coli bioaerosols in the poultry farm when samples were taken at the broiler house exhaust fan (p > 0.05). A greater and constant emission of coliforms and E. coli bioaerosols from the poultry farm warrants further investigation. These data will help inform bioaerosol sampling techniques which can be used for the quantification of bacterial foodborne pathogens and indicator organisms for future research.
Collapse
Affiliation(s)
- Blanca Ruiz-Llacsahuanga
- Department of Food Science and Technology, University of Georgia, 100 Cedar St., Athens, GA 30602, USA.
| | - Martha Sanchez-Tamayo
- Department of Food Science and Technology, University of Georgia, 100 Cedar St., Athens, GA 30602, USA
| | - Govindaraj Dev Kumar
- Center for Food Safety, University of Georgia, 1109 Experiment St, Griffin, GA 30223, USA
| | - Faith Critzer
- Department of Food Science and Technology, University of Georgia, 100 Cedar St., Athens, GA 30602, USA
| |
Collapse
|
2
|
Hasan H, Nasirudeen NA, Ruzlan MAF, Mohd Jamil MA, Ismail NAS, Wahab AA, Ali A. Acute Infectious Gastroenteritis: The Causative Agents, Omics-Based Detection of Antigens and Novel Biomarkers. CHILDREN (BASEL, SWITZERLAND) 2021; 8:1112. [PMID: 34943308 PMCID: PMC8700514 DOI: 10.3390/children8121112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/25/2022]
Abstract
Acute infectious gastroenteritis (AGE) is among the leading causes of mortality in children less than 5 years of age worldwide. There are many causative agents that lead to this infection, with rotavirus being the commonest pathogen in the past decade. However, this trend is now being progressively replaced by another agent, which is the norovirus. Apart from the viruses, bacteria such as Salmonella and Escherichia coli and parasites such as Entamoeba histolytica also contribute to AGE. These agents can be recognised by their respective biological markers, which are mainly the specific antigens or genes to determine the causative pathogen. In conjunction to that, omics technologies are currently providing crucial insights into the diagnosis of acute infectious gastroenteritis at the molecular level. Recent advancement in omics technologies could be an important tool to further elucidate the potential causative agents for AGE. This review will explore the current available biomarkers and antigens available for the diagnosis and management of the different causative agents of AGE. Despite the high-priced multi-omics approaches, the idea for utilization of these technologies is to allow more robust discovery of novel antigens and biomarkers related to management AGE, which eventually can be developed using easier and cheaper detection methods for future clinical setting. Thus, prediction of prognosis, virulence and drug susceptibility for active infections can be obtained. Case management, risk prediction for hospital-acquired infections, outbreak detection, and antimicrobial accountability are aimed for further improvement by integrating these capabilities into a new clinical workflow.
Collapse
Affiliation(s)
- Haziqah Hasan
- Department of Pediatric, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia; (H.H.); (N.A.N.); (M.A.F.R.); (M.A.M.J.)
| | - Nor Ashika Nasirudeen
- Department of Pediatric, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia; (H.H.); (N.A.N.); (M.A.F.R.); (M.A.M.J.)
| | - Muhammad Alif Farhan Ruzlan
- Department of Pediatric, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia; (H.H.); (N.A.N.); (M.A.F.R.); (M.A.M.J.)
| | - Muhammad Aiman Mohd Jamil
- Department of Pediatric, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia; (H.H.); (N.A.N.); (M.A.F.R.); (M.A.M.J.)
| | - Noor Akmal Shareela Ismail
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia;
| | - Asrul Abdul Wahab
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia;
| | - Adli Ali
- Department of Pediatric, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia; (H.H.); (N.A.N.); (M.A.F.R.); (M.A.M.J.)
| |
Collapse
|
3
|
Occurrence of Virulence Genes and Antimicrobial Resistance of E. coli O157:H7 Isolated from the Beef Carcass of Bahir Dar City, Ethiopia. Vet Med Int 2021; 2021:8046680. [PMID: 34580607 PMCID: PMC8464425 DOI: 10.1155/2021/8046680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/26/2021] [Indexed: 11/17/2022] Open
Abstract
E. coli O157:H7 is one of the most virulent foodborne pathogens. The aim of this study was to isolate E. coli O157:H7, determine virulence genes carried by the organism, and assess the antimicrobial susceptibility pattern of the isolates from beef carcass samples at Bahir Dar city. Swab samples (n = 280) were collected from the carcass of cattle slaughtered at the abattoir and processed using sorbitol MacConkey agar supplemented with cefixime telluride and confirmed with latex agglutination test. A polymerase chain reaction was performed on isolates for the detection of virulence genes stx1, stx2, hlyA, and eae. Antimicrobial susceptibility testing was performed using the disk diffusion method. Of 280 samples processed, 25 (8.9%) isolates were positive. Out of 25 isolates subjected for molecular detection, 8 (32%) and 14 (56%) isolates possessed stx1 and stx2 genes, respectively; from those, 5 (20%) isolates had both genes for the production of Shiga toxins. Compared from other virulent genes relatively higher proportion of 18 (72%) isolates carried the hlyA gene. Only 5 (2%) isolates were positive for eae. Resistance was detected in all 25 (100%) isolates and 3 (12%) against clindamycin and trimethoprim, respectively. This study result highlights the potential threat to public health. The abattoir workers need to be aware about the pathogen and should follow appropriate practices to prevent contamination of meat intended for human consumption.
Collapse
|
4
|
Isolation and Identification of Escherichia coli O157:H7 Lytic Bacteriophage from Environment Sewage. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2021; 2021:7383121. [PMID: 34423027 PMCID: PMC8376447 DOI: 10.1155/2021/7383121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 07/24/2021] [Indexed: 11/17/2022]
Abstract
Escherichia coli O157:H7 is one of the pathogenic bacteria causing foodborne disease. The use of lytic bacteriophages can be a good solution to overcome the disease. This study is aimed at isolating lytic bacteriophages from environmental sewage with E. coli O157:H7 bacterial cells. The sample used in this study was eight bacteriophages, and the technique used in identifying E. coli O157:H7 carriers of the stx1 and stx2 genes was PCR. The double layer plaque technique was used to classify bacteriophages. Plaque morphology, host specificity, and electron micrograph were used to identify the bacteriophages. The result obtained plaque morphology as a clear zone with the largest diameter size of 3.5 mm. Lytic bacteriophage could infect E. coli O157:H7 at the highest titer of 10 × 108 PFU/mL. Bacteriophages have been identified as Siphoviridae and Myoviridae. Phage 3, phage 4, and phage 8 could infect Atypical Diarrheagenic E. coli 1 (aDEC1) due to their host specificity. The Friedman statistical tests indicate that lytic bacteriophage can significantly lyse E. coli O157:H7 (p = 0.012). The lysis of E. coli O157:H7 by phage 1, phage 2, phage 3, and phage 5 bacteriophages was statistically significant, according to Conover's posthoc test (p < 0.05). The conclusion obtained from this study is that lytic bacteriophages from environmental sewage could lyse E. coli O157:H7. Therefore, it could be an alternative biocontrol agent against E. coli O157:H7 that contaminates food causing foodborne disease.
Collapse
|
5
|
Getaneh DK, Hordofa LO, Ayana DA, Tessema TS, Regassa LD. Prevalence of Escherichia coli O157:H7 and associated factors in under-five children in Eastern Ethiopia. PLoS One 2021; 16:e0246024. [PMID: 33508023 PMCID: PMC7842931 DOI: 10.1371/journal.pone.0246024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/12/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Escherichia coli O157:H7 (E. coli O157:H7) is one of the most potent zoonotic pathogens that causes mild diarrhea and leads to hemolytic uremic syndrome or death. This study was aimed to assess the prevalence and determinants of E. coli O157:H7 related to diarrhea among under-five children with acute diarrhea. METHODS A cross-sectional study design was carried out in 2018 on 378 under-five-year children recruited randomly from hospitals in Eastern Ethiopia. Stool specimens were collected and processed using enrichment, differential and selective medium. Among isolates, E. coli O157:H7 was confirmed using latex test (Oxoid, Basingstoke, Hants, England). Factors associated with E. coli O157:H7 infection were identified using binary and multivariable logistic regression. Associations were reported by odds ratio with 95% confidence interval. RESULTS The prevalence of E. coli O157:H7 related diarrhea was 15.3% (95%CI: 11.8-19.5). The E. coli O157:H7 infection was positively associated with rural residence (AOR;3.75, 95%CI:1.26-11.20), consumption of undercooked meat (AOR;3.95, 95%CI: 1.23-12.67), raw vegetables and/or fruit juice (AOR;3.37, 95%CI:1.32-8.62), presence of bloody diarrhea (AOR;4.42, 95% CI:1.78-10.94), number of under-five children in a household (AOR;7.16, 95%CI: 2.90-17.70), presence of person with diarrhea in a household (AOR;4.22, 95% CI: 1.84-12.69), owning domestic animal (AOR;3.87, 95% CI: 1.48-10.12) and uneducated mother (AOR;3.14, 95%CI: 1.05-9.42). CONCLUSION The Prevalence of E. coli O157:H7 related diarrhea among under-five children is relatively high in Eastern Ethiopia. The E. coli infection was associated with sanitation and hygiene in a household. Thus, education focused on food cooking and handling, child care, and household sanitation associated with animal manure in rural resident children are helpful in.
Collapse
|
6
|
Ballem A, Gonçalves S, Garcia-Meniño I, Flament-Simon SC, Blanco JE, Fernandes C, Saavedra MJ, Pinto C, Oliveira H, Blanco J, Almeida G, Almeida C. Prevalence and serotypes of Shiga toxin-producing Escherichia coli (STEC) in dairy cattle from Northern Portugal. PLoS One 2020; 15:e0244713. [PMID: 33382795 PMCID: PMC7774927 DOI: 10.1371/journal.pone.0244713] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 12/16/2020] [Indexed: 12/15/2022] Open
Abstract
The prevalence of Shiga toxin (Stx)-producing Escherichia coli (STEC) was determined by evaluating its presence in faecal samples from 155 heifers, and 254 dairy cows in 21 farms at North of Portugal sampled between December 2017 and June 2019. The prevalence of STEC in heifers (45%) was significantly higher than in lactating cows (16%) (p<0.05, Fisher exact test statistic value is <0.00001). A total of 133 STEC were isolated, 24 (13.8%) carried Shiga-toxin 1 (stx1) genes, 69 (39.7%) carried Shiga-toxin 2 (stx2) genes, and 40 (23%) carried both stx1 and stx2. Intimin (eae) virulence gene was detected in 29 (21.8%) of the isolates. STEC isolates belonged to 72 different O:H serotypes, comprising 40 O serogroups and 23 H types. The most frequent serotypes were O29:H12 (15%) and O113:H21 (5.2%), found in a large number of farms. Two isolates belonged to the highly virulent serotypes associated with human disease O157:H7 and O26:H11. Many other bovine STEC serotypes founded in this work belonged to serotypes previously described as pathogenic to humans. Thus, this study highlights the need for control strategies that can reduce STEC prevalence at the farm level and, thus, prevent food and environmental contamination.
Collapse
Affiliation(s)
- Andressa Ballem
- National Institute for Agrarian and Veterinary Research, Vairão, Vila do Conde, Portugal
- Veterinary Science Department, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Farroupilha Federal Institute, Campus of São Vicente do Sul, Rio Grande do Sul, São Vicente do Sul, Brazil
- Centre for the Research and Technology of Agro-Environmental and Biological Science, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Centro de Investigação de Montanha, School of Agriculture, Polytechnic Institute of Bragança, Bragança, Portugal
| | - Soraia Gonçalves
- National Institute for Agrarian and Veterinary Research, Vairão, Vila do Conde, Portugal
| | - Isidro Garcia-Meniño
- Laboratorio de Referencia de E. coli, Department of Microbiology and Parasitology, Veterinary Faculty, University of Santiago de Compostela, Lugo, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain
| | - Saskia C. Flament-Simon
- Laboratorio de Referencia de E. coli, Department of Microbiology and Parasitology, Veterinary Faculty, University of Santiago de Compostela, Lugo, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain
| | - Jesús E. Blanco
- Laboratorio de Referencia de E. coli, Department of Microbiology and Parasitology, Veterinary Faculty, University of Santiago de Compostela, Lugo, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain
| | - Conceição Fernandes
- Centro de Investigação de Montanha, School of Agriculture, Polytechnic Institute of Bragança, Bragança, Portugal
| | - Maria José Saavedra
- Veterinary Science Department, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Science, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Carlos Pinto
- National Institute for Agrarian and Veterinary Research, Vairão, Vila do Conde, Portugal
| | - Hugo Oliveira
- Centre of Biological Engineering, University of Minho, Campus of Gualtar, Braga, Portugal
- * E-mail: (CA); (HO)
| | - Jorge Blanco
- Laboratorio de Referencia de E. coli, Department of Microbiology and Parasitology, Veterinary Faculty, University of Santiago de Compostela, Lugo, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain
| | - Gonçalo Almeida
- National Institute for Agrarian and Veterinary Research, Vairão, Vila do Conde, Portugal
| | - Carina Almeida
- National Institute for Agrarian and Veterinary Research, Vairão, Vila do Conde, Portugal
- * E-mail: (CA); (HO)
| |
Collapse
|
7
|
Zhang J, Wang XY, Wang YH, Wang DD, Song Z, Zhang CD, Wang HS. Colorable Zeolitic Imidazolate Frameworks for Colorimetric Detection of Biomolecules. Anal Chem 2020; 92:12670-12677. [PMID: 32842725 DOI: 10.1021/acs.analchem.0c02895] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We report a series of colorable zeolitic imidazolate framework (ZIF)-based nanomaterials prepared by encapsulating starches (amylopectin, dextrin, or amylose) or tannic acid in the frameworks of ZIFs and first applied them in colorimetric assay of microRNA/DNA by adding I2/KI or FeCl3 solutions as chromogenic reagents. We found that iodine molecules can lead to rapid degradation of the ZIF-8 framework, while ZIF-90 remains stable. Therefore, ZIF-90 was selected for encapsulating the starches or tannic acid, and then assembled with polyethylenimine (PEI) and aptamers of microRNA/DNA. After interacting with the target microRNA/DNA, the aptamers (Ap) move away from the surface of the prepared Ap-starch@ZIF-90 or Ap-tan@ZIF-90, and the I2/KI or FeCl3 solution is added into the system to interact the starches (amylopectin, dextrin, or amylose) or tannic acid to generate different colors. According to the absorbance spectra, good linear correlations between the logarithm of absorbance intensity and the concentration of microRNA (1-180 nM) can be observed, and the naked eye can distinguish the change from ∼60 to ∼180 nM with a concentration gradient of 20 nM. A similar colorimetric assay ability for pathogenic bacteria can also be realized by detecting the gene fragments IS200 and eaeA. The detection limits can be potentially optimized by changing the amount of adsorbed PEI and aptamers on the surface of Ap-starch@ZIF-90 (or Ap-tan@ZIF-90) nanoparticles. This method could be a promising alternative for simple and cost-effective assay of microRNA/DNA.
Collapse
Affiliation(s)
- Jie Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.,Tianjin Key Laboratory of Food Biotechnology, Tianjin University of Commerce, Tianjin 300134, China
| | - Xing-Yu Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.,Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Yi-Hui Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.,Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Dan-Dan Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.,Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Zhen Song
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.,Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Chang-Dong Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Huai-Song Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.,Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
8
|
Khezri M, Rezaei M, Mohabbati Mobarez A, Zolfaghari M. Viable but non culturable state and expression of pathogenic genes of
Escherichia coli
O157
:
H7
in salted silver carp. J Food Saf 2020. [DOI: 10.1111/jfs.12843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mohammad Khezri
- Department of Seafood Processing, Faculty of Marine Sciences Tarbiat Modares University Noor Iran
| | - Masoud Rezaei
- Department of Seafood Processing, Faculty of Marine Sciences Tarbiat Modares University Noor Iran
| | | | - Mehdi Zolfaghari
- Faculty of Fisheries and Environmental Sciences Agricultur and Natural Resource University of Gorgan Gorgan Iran
| |
Collapse
|
9
|
Taghadosi R, Shakibaie MR, Alizade H, Hosseini-Nave H, Askari A, Ghanbarpour R. Serogroups, subtypes and virulence factors of shiga toxin-producing Escherichia coli isolated from human, calves and goats in Kerman, Iran. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2018; 11:60-67. [PMID: 29564067 PMCID: PMC5849120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/27/2018] [Indexed: 02/08/2023]
Abstract
AIM The present study was conducted to detect the occurrence, serogroups, virulence genes and phylogenetic relationship of shiga toxin-producing Escherichia coli (STEC) in human, clave and goat in Kerman (southeast of Iran). BACKGROUND STEC have emerged as the important foodborne zoonotic pathogens causing human gastrointestinal disease and confirming the risk to public health. METHODS A total of 671 fecal samples were collected from diarrheic patients (n=395) and healthy calves (n=156) and goats (n=120) and screened for the presence of stx gene. Furthermore, the prevalence of stx1 and stx2 variants, serotypes (O157, O145, O103, O26, O111, O91, O128, and O45), phylogenetic groups and the presence of ehxA, eae, hylA, iha and saa virulence genes were studied. RESULTS Prevalence of STEC in human diarrheic isolates was 1.3% (5 isolates), in claves was 26.3% (41 isolates) and in goats was 27.5% (33 isolates). stx1 gene was the most prevalent variant and detected in 75 isolates. Furthermore, stx1c was the most predominant stx subtype, found in 56 isolates. The ehxA identified in 36 (45.6%) isolates, followed by iha 5 (6.3%), eaeA 4 (5.1%), hlyA 2 (2.5%) and saa 2 (2.5%). Most of the isolates belonged to phylogroup B1. Only two O26 and one O91 isolates were detected in our study. CONCLUSION Our results show that STEC strains were widespread among healthy domestic animals in the southeast of Iran.
Collapse
Affiliation(s)
- Rohollah Taghadosi
- Department of Microbiology and Virology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Reza Shakibaie
- Department of Microbiology and Virology, Kerman University of Medical Sciences, Kerman, Iran
| | - Hesam Alizade
- Infectious and Tropical Disease Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Hossein Hosseini-Nave
- Department of Microbiology and Virology, Kerman University of Medical Sciences, Kerman, Iran
| | - Asma Askari
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Reza Ghanbarpour
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
10
|
MALDI-TOF-MS based identification and molecular characterization of food associated methicillin-resistant Staphylococcus aureus. Sci Rep 2017; 7:11414. [PMID: 28900246 PMCID: PMC5595867 DOI: 10.1038/s41598-017-11597-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/29/2017] [Indexed: 02/08/2023] Open
Abstract
Food-borne methicillin resistant Staphylococcus aureus (MRSA) is involved in two-fold higher mortality rate compared to methicillin susceptible S. aureus (MSSA). Eventhough Mysuru recognized as cleanest city in the world, prevalence of food contamination is not detailed. The aim is to screen food samples from Mysuru area and to characterize MRSA strain, employing MALDI-Biotyper, multiplex PCR to distinguish between MRSA and MSSA by PCR-coupled single strand conformation polymorphism (PCR-SSCP). Of all the food-borne pathogens, S. aureus contamination accounts for 94.37 ± 0.02% (P < 0.01), strains characterized by means of nuc genes, followed by species specific identification by Coa, Eap and SpA genes and multiplex PCR to confirm the presence of three methicillin resistant staphylococcal species simultaneously using nuc and phoP genes. Amplification of mecA gene in 159 isolates confirmed that all strains are methicillin resistant, except UOM160 (MSSA) and multi-drug resistant (MDR) in 159 isolates confirmed by 22 sets of β-lactam antibiotics. MSSA and MDR-MRSA were discriminated by PCR-SSCP using nuc gene for the first time. From the present studies, compared to conventional methods MALDI-Biotyper emerged as an effective, sensitive (>99%), robust (<2 min), and alternative tool for pathogen identification, and we developed a PCR-SSCP technique for rapid detection of MSSA and MRSA strains.
Collapse
|
11
|
Askari Badouei M. Escherichia coli O157: H7 in Iran: Time to Look Closer. INTERNATIONAL JOURNAL OF ENTERIC PATHOGENS 2016. [DOI: 10.17795/ijep37471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|