1
|
Punia Bangar S, Kajla P, Chaudhary V, Sharma N, Ozogul F. Luteolin: A flavone with myriads of bioactivities and food applications. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
2
|
Dwivedi MK, Shukla R, Sharma NK, Manhas A, Srivastava K, Kumar N, Singh PK. Evaluation of ethnopharmacologically selected Vitex negundo L. for In vitro antimalarial activity and secondary metabolite profiling. JOURNAL OF ETHNOPHARMACOLOGY 2021; 275:114076. [PMID: 33789139 DOI: 10.1016/j.jep.2021.114076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/03/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
ETHANOPHARMACOLOGICAL RELEVANCE Limited drugs, rise in drug resistance against frontline anti-malarial drugs, non-availability of efficacious vaccines and high cost of drug development hinders malaria intervention programs. Search for safe, effective and affordable plant based anti-malarial agents, thus becomes crucial and vital in the current scenario. The Vitex negundo L. is medicinal plant possessing a variety of pharmaceutically important compounds. The plant is used traditionally worldwide for the treatment of malaria including India and Malaysia by the indigenous tribes. In vitro studies have reported the anti-malarial use of the plant in traditional medicinal systems. AIM OF THE STUDY The aim of the current study is to evaluate the traditionally used medicinal plants for in vitro anti-malarial activity against human malaria parasite Plasmodium falciparum and profiling secondary metabolite using spectroscopic and chromatographic methods. Chemical profiling of active secondary metabolites in the extracts was undertaken using LC-MS. MATERIALS AND METHODS Based on the ethno-botanical data V. negundo L. was selected for in vitro anti-malarial activity against P. falciparum chloroquine-sensitive (3D7) and multidrug resistant (K1) strains using SYBR Green-I based fluorescence assay. Cytotoxicity of extracts was evaluated in VERO cell line using the MTT assay. Haemolysis assay was performed using human red blood cells. Secondary metabolites profiling was undertaken using chromatographic and spectroscopic analysis. Liquid chromatography analysis was performed using a C18, 150 X 2.1, 2.6 μm column with gradient mobile phase Solvent A: 95% (H2O: ACN), Solvent B: Acetonitrile, Solvent C: Methanol, Solvent D: 5 mM NH4 in 95:5 (H2O: ACN) at a constant flow rate of 0.250 ml/min. The LC-MS spectra were acquired in both positive and negative ion modes with electrospray ionization (ESI) source. RESULTS The anti-malarial active extract of V. negundo L. leaf exhibited potent anti-malarial activity with IC50 values of 7.21 μg/ml and 7.43 μg/ml against 3D7 and K1 strains, respectively with no evidence of significant cytotoxicity against mammalian cell line (VERO) and no toxicity as observed in haemolysis assay. The HPLC-LC-MS analysis of the extract led to identification of 73 compounds. We report for the first time the presence of Sabinene hydrate acetate, 5-Hydroxyoxindole, 2(3,4-dimethoxyphenyl)-6, 7-dimethoxychromen-4-one, Cyclotetracosa-1, 13-diene and 5, 7-Dimethoxyflavanone in the anti-malarial active extract of V. negundo L. leaf. Agnuside, Behenic acid and Globulol are some of the novel compounds with no reports of anti-malarial activity so far and require further evaluation in pure form for the development of potent anti-malarial compounds. CONCLUSIONS The result report and scientifically validate the traditional use of V. negundo L. for the treatment of malaria providing new avenues for anti-malarial drug development. Several novel and unknown compounds were identified that need to be further characterized for anti-malarial potential.
Collapse
Affiliation(s)
- Manish Kumar Dwivedi
- Department of Biotechnology, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, 484 887, India
| | - Ravindra Shukla
- Department of Botany, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, 484887, India
| | - Naveen Kumar Sharma
- Department of Botany, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, 484887, India
| | - Ashan Manhas
- Department of Molecular Parasitology and Immunology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Kumkum Srivastava
- Department of Molecular Parasitology and Immunology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Niti Kumar
- Department of Molecular Parasitology and Immunology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Prashant Kumar Singh
- Department of Biotechnology, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, 484 887, India.
| |
Collapse
|
3
|
Talib WH, Alsalahat I, Daoud S, Abutayeh RF, Mahmod AI. Plant-Derived Natural Products in Cancer Research: Extraction, Mechanism of Action, and Drug Formulation. Molecules 2020; 25:E5319. [PMID: 33202681 PMCID: PMC7696819 DOI: 10.3390/molecules25225319] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer is one of the main causes of death globally and considered as a major challenge for the public health system. The high toxicity and the lack of selectivity of conventional anticancer therapies make the search for alternative treatments a priority. In this review, we describe the main plant-derived natural products used as anticancer agents. Natural sources, extraction methods, anticancer mechanisms, clinical studies, and pharmaceutical formulation are discussed in this review. Studies covered by this review should provide a solid foundation for researchers and physicians to enhance basic and clinical research on developing alternative anticancer therapies.
Collapse
Affiliation(s)
- Wamidh H. Talib
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan;
| | - Izzeddin Alsalahat
- Department of Pharmaceutical Chemistry and Pharmacognosy, Applied Science Private University, Amman 11931, Jordan; (I.A.); (S.D.); (R.F.A.)
| | - Safa Daoud
- Department of Pharmaceutical Chemistry and Pharmacognosy, Applied Science Private University, Amman 11931, Jordan; (I.A.); (S.D.); (R.F.A.)
| | - Reem Fawaz Abutayeh
- Department of Pharmaceutical Chemistry and Pharmacognosy, Applied Science Private University, Amman 11931, Jordan; (I.A.); (S.D.); (R.F.A.)
| | - Asma Ismail Mahmod
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan;
| |
Collapse
|
4
|
He G, Li J, Pang X, Wang H, Jin H, He J, Fang SM, Chang YX. A Beta/ZSM-22 Zeolites-Based-Mixed Matrix Solid-Phase Dispersion Method for the Simultaneous Extraction and Determination of Eight Compounds with Different Polarities in Viticis Fructus by High-Performance Liquid Chromatography. Molecules 2019; 24:molecules24193423. [PMID: 31547120 PMCID: PMC6804124 DOI: 10.3390/molecules24193423] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 09/11/2019] [Accepted: 09/19/2019] [Indexed: 01/11/2023] Open
Abstract
Viticis Fructus (VF) was named Manjingzi as a commonly used traditional Chinese medicine (TCM) targeting various pains and inflammation for more than 2000 years. To guarantee the quality of Viticis Fructus, a simple, quick and eco-friendly Beta/ZSM-22 zeolites-based-mixed matrix solid-phase dispersion method (B/Z-MMSPD) was established for simultaneous extraction and determination of eight compounds (two phenolic acids, two iridoid glycosides, vanillin and three flavonoids) with different polarities from Viticis Fructus by high performance liquid chromatography coupled with a diode array detector (HPLC-DAD). Beta and ZSM-22 were mixed as the sorbent. Water, tetrahydrofuran and methanol were blended with certain ratio as the eluent. Several parameters including types of sorbents, mass ratio of Beta to ZSM-22, mass ratio of matrix to sorbent, grinding time, types, concentration and volume of eluent were optimized. The recoveries of eight analytes were within the range of 95.0%–105% (RSDs ≤ 4.13%). The limits of detection and limits of quantitation ranged from 0.5 to 5.5 μg/g and from 1.5 to 16 μg/g, respectively. Compared to the traditional extract methods, it was a simple, rapid, efficient and green method. The results demonstrated that a simple, rapid, efficient and green B/Z-MMSPD was developed for the simultaneous extraction and determination of eight target analytes with different polarities for quality control of Viticis Fructus.
Collapse
Affiliation(s)
- Gaogao He
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Jin Li
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Xiaoli Pang
- Academy of Nursing, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Hui Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Hua Jin
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Jun He
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Shi-Ming Fang
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Yan-Xu Chang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
5
|
Manzoor MF, Ahmad N, Ahmed Z, Siddique R, Zeng XA, Rahaman A, Muhammad Aadil R, Wahab A. Novel extraction techniques and pharmaceutical activities of luteolin and its derivatives. J Food Biochem 2019; 43:e12974. [PMID: 31489656 DOI: 10.1111/jfbc.12974] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/11/2019] [Accepted: 06/15/2019] [Indexed: 11/26/2022]
Abstract
Luteolin is a 3', 4', 5, 7 tetra hydroxyl flavonoid that exits in many plants, fruits, and vegetable. Many methods of extraction, isolation, and purification are being used, and therapeutic properties are being under discussion due to its valuable role in nutrition and human health. In this review, we have summarized conventional and novel extraction techniques from most recent research on luteolin, its derivatives, and its biological activities. Maceration, soxhlet, reflux, hydrodistillation, ultrasound-assisted extraction, microwave-assisted extraction, ultrasound microwave-assisted extraction, enzyme-assisted extraction, supercritical fluid extraction, and high-speed counter-current chromatography extraction techniques are being used for isolation and purification of these phytochemicals. The anti-inflammatory, anti-cancer, antioxidant, antiviral, heart protective, neurological impairments protection, anti-aging, and whiting properties have been discussed in this review. The literature suggests luteolin and its derivative has many promising health benefits and its therapeutic activity is strongly associated with isolating and purifying solvents and extraction techniques. PRACTICAL APPLICATIONS: This review aims to highlight the sources, novel extraction techniques, and pharmaceutical properties of luteolin. This review provides enough knowledge about how to get maximum extraction yield of luteolin using the novel extraction techniques. Because its therapeutic activity is strongly associated with isolating and purifying solvents and techniques.
Collapse
Affiliation(s)
- Muhammad Faisal Manzoor
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| | - Nazir Ahmad
- Department of Food Science and Nutrition, Faculty of Life Science, Government College University, Faisalabad, Pakistan
| | - Zahoor Ahmed
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| | - Rabia Siddique
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | - Xin-An Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| | - Abdul Rahaman
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture Faisalabad, Pakistan
| | - Abdul Wahab
- Department of Food Science and Nutrition, Faculty of Life Science, Government College University, Faisalabad, Pakistan
| |
Collapse
|
6
|
Abidin L, Ansari S, Gupta T, Mujeeb M, Ahmad A, Ahmad V, Mir S. Statistical approach towards optimization of extraction process of karanjin from Pongamia pinnata seeds. Pharmacogn Mag 2019. [DOI: 10.4103/pm.pm_609_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
7
|
S. A, M. S. [EMIM] BF4 ionic liquid-mediated synthesis of TiO2 nanoparticles using Vitex negundo Linn extract and its antibacterial activity. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.06.079] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Ambika S, Sundrarajan M. Antibacterial behaviour of Vitex negundo extract assisted ZnO nanoparticles against pathogenic bacteria. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 146:52-7. [DOI: 10.1016/j.jphotobiol.2015.02.020] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 01/27/2015] [Accepted: 02/17/2015] [Indexed: 11/24/2022]
|