1
|
Morandi A, Fornari E, Corradi M, Umano GR, Olivieri F, Piona C, Maguolo A, Panzeri C, Emiliani F, Cirillo G, Cavarzere P, Miraglia Del Giudice E, Maffeis C. Variant reclassification over time decreases the level of diagnostic uncertainty in monogenic obesity: Experience from two centres. Pediatr Obes 2024; 19:e13183. [PMID: 39462520 DOI: 10.1111/ijpo.13183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 10/04/2024] [Accepted: 10/15/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND The diagnosis of monogenic obesity is burdened by frequent variants of uncertain significance (VUS). We describe our real-life approach of variant reassessment over time and we assess whether inconclusive variants are decreasing in monogenic obesity. METHODS We tested for monogenic obesity (genes: LEPR, POMC, ADCY3, PCSK1, CARTPT, SIM1, MRAP2, LEP, NTRK2, BDNF, KSR2, MAGEL2, SH2B1, MC4R, MC3R) in 101 children/adolescents (11.7 [7.3-13.7] years, 3.6 [3.3-4.0] z-BMI) in Verona and 183 (11.3 [8.4-12.2] years, 3.2 [2.7-3.9] z-BMI) in Naples from January 2020 to February 2023. In March-July 2024 we reassessed the baseline variants by updated software interpretation and literature renavigation. RESULTS We initially found 20 VUS, 4 Likely Pathogenic (LP), 5 Likely Benign (LB) and 1 benign variant in 33 individuals. At follow-up, 6 VUS were reclassified as benign/LB, one LP as pathogenic and 3 LB as benign. Overall, 10/30 variants (6/18 in Verona, 3/11 in Naples and a variant found in both centres) were reclassified, leading to a less uncertain report for 13 of 33 variant-carrying patients. Monogenic obesity was diagnosed in 3 probands in Verona and 4 in Naples, carrying variants at MC4R or NTRK2. CONCLUSION Our variant reassessment was effective to improve classification certainty for the 39% of patients and suggested that the molecular diagnosis of monogenic obesity is becoming more accurate over time.
Collapse
Affiliation(s)
- Anita Morandi
- Section of Pediatric Diabetes and Metabolism, Department of Surgery, Dentistry, Pediatrics, and Gynecology, University of Verona, Verona, Italy
| | - Elena Fornari
- Section of Pediatric Diabetes and Metabolism, Department of Surgery, Dentistry, Pediatrics, and Gynecology, University of Verona, Verona, Italy
| | - Massimiliano Corradi
- Section of Pediatric Diabetes and Metabolism, Department of Surgery, Dentistry, Pediatrics, and Gynecology, University of Verona, Verona, Italy
| | - Giuseppina Rosaria Umano
- Department of Woman, Child and of General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Francesca Olivieri
- Section of Pediatric Diabetes and Metabolism, Department of Surgery, Dentistry, Pediatrics, and Gynecology, University of Verona, Verona, Italy
| | - Claudia Piona
- Section of Pediatric Diabetes and Metabolism, Department of Surgery, Dentistry, Pediatrics, and Gynecology, University of Verona, Verona, Italy
| | - Alice Maguolo
- Section of Pediatric Diabetes and Metabolism, Department of Surgery, Dentistry, Pediatrics, and Gynecology, University of Verona, Verona, Italy
- Epigenetics and Diabetes Unit, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden
| | - Carola Panzeri
- Section of Pediatric Diabetes and Metabolism, Department of Surgery, Dentistry, Pediatrics, and Gynecology, University of Verona, Verona, Italy
| | - Federica Emiliani
- Section of Pediatric Diabetes and Metabolism, Department of Surgery, Dentistry, Pediatrics, and Gynecology, University of Verona, Verona, Italy
| | - Grazia Cirillo
- Department of Woman, Child and of General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Paolo Cavarzere
- Section of Pediatric Diabetes and Metabolism, Department of Surgery, Dentistry, Pediatrics, and Gynecology, University of Verona, Verona, Italy
| | - Emanuele Miraglia Del Giudice
- Department of Woman, Child and of General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Claudio Maffeis
- Section of Pediatric Diabetes and Metabolism, Department of Surgery, Dentistry, Pediatrics, and Gynecology, University of Verona, Verona, Italy
| |
Collapse
|
2
|
Guo Y, Chen SD, You J, Huang SY, Chen YL, Zhang Y, Wang LB, He XY, Deng YT, Zhang YR, Huang YY, Dong Q, Feng JF, Cheng W, Yu JT. Multiplex cerebrospinal fluid proteomics identifies biomarkers for diagnosis and prediction of Alzheimer's disease. Nat Hum Behav 2024; 8:2047-2066. [PMID: 38987357 DOI: 10.1038/s41562-024-01924-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 06/10/2024] [Indexed: 07/12/2024]
Abstract
Recent expansion of proteomic coverage opens unparalleled avenues to unveil new biomarkers of Alzheimer's disease (AD). Among 6,361 cerebrospinal fluid (CSF) proteins analysed from the ADNI database, YWHAG performed best in diagnosing both biologically (AUC = 0.969) and clinically (AUC = 0.857) defined AD. Four- (YWHAG, SMOC1, PIGR and TMOD2) and five- (ACHE, YWHAG, PCSK1, MMP10 and IRF1) protein panels greatly improved the accuracy to 0.987 and 0.975, respectively. Their superior performance was validated in an independent external cohort and in discriminating autopsy-confirmed AD versus non-AD, rivalling even canonical CSF ATN biomarkers. Moreover, they effectively predicted the clinical progression to AD dementia and were strongly associated with AD core biomarkers and cognitive decline. Synaptic, neurogenic and infectious pathways were enriched in distinct AD stages. Mendelian randomization did not support the significant genetic link between CSF proteins and AD. Our findings revealed promising high-performance biomarkers for AD diagnosis and prediction, with implications for clinical trials targeting different pathomechanisms.
Collapse
Affiliation(s)
- Yu Guo
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shi-Dong Chen
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jia You
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Shu-Yi Huang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi-Lin Chen
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi Zhang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lin-Bo Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Xiao-Yu He
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yue-Ting Deng
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ya-Ru Zhang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu-Yuan Huang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qiang Dong
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jian-Feng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Wei Cheng
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Jin-Tai Yu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Brito Nunes C, Borges MC, Freathy RM, Lawlor DA, Qvigstad E, Evans DM, Moen GH. Understanding the Genetic Landscape of Gestational Diabetes: Insights into the Causes and Consequences of Elevated Glucose Levels in Pregnancy. Metabolites 2024; 14:508. [PMID: 39330515 PMCID: PMC11434570 DOI: 10.3390/metabo14090508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
Background/Objectives: During pregnancy, physiological changes in maternal circulating glucose levels and its metabolism are essential to meet maternal and fetal energy demands. Major changes in glucose metabolism occur throughout pregnancy and consist of higher insulin resistance and a compensatory increase in insulin secretion to maintain glucose homeostasis. For some women, this change is insufficient to maintain normoglycemia, leading to gestational diabetes mellitus (GDM), a condition characterized by maternal glucose intolerance and hyperglycaemia first diagnosed during the second or third trimester of pregnancy. GDM is diagnosed in approximately 14.0% of pregnancies globally, and it is often associated with short- and long-term adverse health outcomes in both mothers and offspring. Although recent studies have highlighted the role of genetic determinants in the development of GDM, research in this area is still lacking, hindering the development of prevention and treatment strategies. Methods: In this paper, we review recent advances in the understanding of genetic determinants of GDM and glycaemic traits during pregnancy. Results/Conclusions: Our review highlights the need for further collaborative efforts as well as larger and more diverse genotyped pregnancy cohorts to deepen our understanding of the genetic aetiology of GDM, address research gaps, and further improve diagnostic and treatment strategies.
Collapse
Affiliation(s)
- Caroline Brito Nunes
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4067, Australia
| | - Maria Carolina Borges
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 1QU, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PS, UK
| | - Rachel M. Freathy
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter EX4 4PY, UK;
| | - Deborah A. Lawlor
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 1QU, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PS, UK
| | - Elisabeth Qvigstad
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, 0424 Oslo, Norway
| | - David M. Evans
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4067, Australia
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 1QU, UK
- Frazer Institute, University of Queensland, Brisbane 4102, Australia
| | - Gunn-Helen Moen
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4067, Australia
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway
- Frazer Institute, University of Queensland, Brisbane 4102, Australia
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
4
|
Saeed S, Bonnefond A, Froguel P. Obesity: exploring its connection to brain function through genetic and genomic perspectives. Mol Psychiatry 2024:10.1038/s41380-024-02737-9. [PMID: 39237720 DOI: 10.1038/s41380-024-02737-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
Obesity represents an escalating global health burden with profound medical and economic impacts. The conventional perspective on obesity revolves around its classification as a "pure" metabolic disorder, marked by an imbalance between calorie consumption and energy expenditure. Present knowledge, however, recognizes the intricate interaction of rare or frequent genetic factors that favor the development of obesity, together with the emergence of neurodevelopmental and mental abnormalities, phenotypes that are modulated by environmental factors such as lifestyle. Thirty years of human genetic research has unveiled >20 genes, causing severe early-onset monogenic obesity and ~1000 loci associated with common polygenic obesity, most of those expressed in the brain, depicting obesity as a neurological and mental condition. Therefore, obesity's association with brain function should be better recognized. In this context, this review seeks to broaden the current perspective by elucidating the genetic determinants that contribute to both obesity and neurodevelopmental and mental dysfunctions. We conduct a detailed examination of recent genetic findings, correlating them with clinical and behavioral phenotypes associated with obesity. This includes how polygenic obesity, influenced by a myriad of genetic variants, impacts brain regions associated with addiction and reward, differentiating it from monogenic forms. The continuum between non-syndromic and syndromic monogenic obesity, with evidence from neurodevelopmental and cognitive assessments, is also addressed. Current therapeutic approaches that target these genetic mechanisms, yielding improved clinical outcomes and cognitive advantages, are discussed. To sum up, this review corroborates the genetic underpinnings of obesity, affirming its classification as a neurological disorder that may have broader implications for neurodevelopmental and mental conditions. It highlights the promising intersection of genetics, genomics, and neurobiology as a foundation for developing tailored medical approaches to treat obesity and its related neurological aspects.
Collapse
Affiliation(s)
- Sadia Saeed
- INSERM UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Lille, France
- University of Lille, Lille University Hospital, Lille, France
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Amélie Bonnefond
- INSERM UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Lille, France
- University of Lille, Lille University Hospital, Lille, France
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Philippe Froguel
- INSERM UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Lille, France.
- University of Lille, Lille University Hospital, Lille, France.
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| |
Collapse
|
5
|
Folon L, Baron M, Scherrer V, Toussaint B, Vaillant E, Loiselle H, Dechaume A, De Pooter F, Boutry R, Boissel M, Diallo A, Ning L, Balkau B, Charpentier G, Franc S, Marre M, Derhourhi M, Froguel P, Bonnefond A. Pathogenic, Total Loss-of-Function DYRK1B Variants Cause Monogenic Obesity Associated With Type 2 Diabetes. Diabetes Care 2024; 47:444-451. [PMID: 38170957 DOI: 10.2337/dc23-1851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024]
Abstract
OBJECTIVE Rare variants in DYRK1B have been described in some patients with central obesity, type 2 diabetes, and early-onset coronary disease. Owing to the limited number of conducted studies, the broader impact of DYRK1B variants on a larger scale has yet to be investigated. RESEARCH DESIGN AND METHODS DYRK1B was sequenced in 9,353 participants from a case-control study for obesity and type 2 diabetes. Each DYRK1B variant was functionally assessed in vitro. Variant pathogenicity was determined using criteria from the American College of Medical Genetics and Genomics (ACMG). The effect of pathogenic or likely pathogenic (P/LP) variants on metabolic traits was assessed using adjusted mixed-effects score tests. RESULTS Sixty-five rare, heterozygous DYRK1B variants were identified and were not associated with obesity or type 2 diabetes. Following functional analyses, 20 P/LP variants were pinpointed, including 6 variants that exhibited a fully inhibitory effect (P/LP-null) on DYRK1B activity. P/LP and P/LP-null DYRK1B variants were associated with increased BMI and obesity risk; however, the impact was notably more pronounced for the P/LP-null variants (effect of 8.0 ± 3.2 and odds ratio of 7.9 [95% CI 1.2-155]). Furthermore, P/LP-null variants were associated with higher fasting glucose and type 2 diabetes risk (effect of 2.9 ± 1.0 and odds ratio of 4.8 [95% CI 0.85-37]), while P/LP variants had no effect on glucose homeostasis. CONCLUSIONS P/LP, total loss-of-function DYRK1B variants cause monogenic obesity associated with type 2 diabetes. This study underscores the significance of conducting functional assessments in order to accurately ascertain the tangible effects of P/LP DYRK1B variants.
Collapse
Affiliation(s)
- Lise Folon
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France
- Université de Lille, Lille, France
| | - Morgane Baron
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France
- Université de Lille, Lille, France
| | - Victoria Scherrer
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France
- Université de Lille, Lille, France
| | - Bénédicte Toussaint
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France
- Université de Lille, Lille, France
| | - Emmanuel Vaillant
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France
- Université de Lille, Lille, France
| | - Hélène Loiselle
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France
- Université de Lille, Lille, France
| | - Aurélie Dechaume
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France
- Université de Lille, Lille, France
| | - Frédérique De Pooter
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France
- Université de Lille, Lille, France
| | - Raphaël Boutry
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France
- Université de Lille, Lille, France
| | - Mathilde Boissel
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France
- Université de Lille, Lille, France
| | - Aboubacar Diallo
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France
- Université de Lille, Lille, France
| | - Lijiao Ning
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France
- Université de Lille, Lille, France
| | - Beverley Balkau
- Paris-Saclay University, Paris-Sud University, UVSQ, Center for Research in Epidemiology and Population Health, Inserm U1018 Clinical Epidemiology, Villejuif, France
| | - Guillaume Charpentier
- CERITD (Centre d'Étude et de Recherche pour l'Intensification du Traitement du Diabète), Evry, France
| | - Sylvia Franc
- CERITD (Centre d'Étude et de Recherche pour l'Intensification du Traitement du Diabète), Evry, France
- Department of Diabetes, Sud-Francilien Hospital, Paris-Sud University, Corbeil-Essonnes, France
| | - Michel Marre
- Institut Necker-Enfants Malades, INSERM, Université de Paris, Paris, France
- Clinique Ambroise Paré, Neuilly-sur-Seine, France
| | - Mehdi Derhourhi
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France
- Université de Lille, Lille, France
| | - Philippe Froguel
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France
- Université de Lille, Lille, France
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, U.K
| | - Amélie Bonnefond
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France
- Université de Lille, Lille, France
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, U.K
| |
Collapse
|
6
|
Ramasamy I. Physiological Appetite Regulation and Bariatric Surgery. J Clin Med 2024; 13:1347. [PMID: 38546831 PMCID: PMC10932430 DOI: 10.3390/jcm13051347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 04/10/2024] Open
Abstract
Obesity remains a common metabolic disorder and a threat to health as it is associated with numerous complications. Lifestyle modifications and caloric restriction can achieve limited weight loss. Bariatric surgery is an effective way of achieving substantial weight loss as well as glycemic control secondary to weight-related type 2 diabetes mellitus. It has been suggested that an anorexigenic gut hormone response following bariatric surgery contributes to weight loss. Understanding the changes in gut hormones and their contribution to weight loss physiology can lead to new therapeutic treatments for weight loss. Two distinct types of neurons in the arcuate hypothalamic nuclei control food intake: proopiomelanocortin neurons activated by the anorexigenic (satiety) hormones and neurons activated by the orexigenic peptides that release neuropeptide Y and agouti-related peptide (hunger centre). The arcuate nucleus of the hypothalamus integrates hormonal inputs from the gut and adipose tissue (the anorexigenic hormones cholecystokinin, polypeptide YY, glucagon-like peptide-1, oxyntomodulin, leptin, and others) and orexigeneic peptides (ghrelin). Replicating the endocrine response to bariatric surgery through pharmacological mimicry holds promise for medical treatment. Obesity has genetic and environmental factors. New advances in genetic testing have identified both monogenic and polygenic obesity-related genes. Understanding the function of genes contributing to obesity will increase insights into the biology of obesity. This review includes the physiology of appetite control, the influence of genetics on obesity, and the changes that occur following bariatric surgery. This has the potential to lead to the development of more subtle, individualised, treatments for obesity.
Collapse
Affiliation(s)
- Indra Ramasamy
- Department of Blood Sciences, Conquest Hospital, Hastings TN37 7RD, UK
| |
Collapse
|
7
|
Wang Y, Yang C, Wen J, Ju L, Ren Z, Zhang T, Liu Y. Whole-exome sequencing combined with postoperative data identify c.1614dup (CAMKK2) as a novel candidate monogenic obesity variant. Front Endocrinol (Lausanne) 2024; 15:1334342. [PMID: 38469147 PMCID: PMC10925648 DOI: 10.3389/fendo.2024.1334342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/09/2024] [Indexed: 03/13/2024] Open
Abstract
Early-onset obesity is a rising health concern influenced by heredity. However, many monogenic obesity variants (MOVs) remain to be discovered due to differences in ethnicity and culture. Additionally, patients with known MOVs have shown limited weight loss after bariatric surgery, suggesting it can be used as a screening tool for new candidates. In this study, we performed whole-exome sequencing (WES) combined with postoperative data to detect candidate MOVs in a cohort of 62 early-onset obesity and 9 late-onset obesity patients. Our findings demonstrated that patients with early-onset obesity preferred a higher BMI and waist circumference (WC). We confirmed the efficacy of the method by identifying a mutation in known monogenic obesity gene, PCSK1, which resulted in less weight loss after surgery. 5 genes were selected for further verification, and a frameshift variant in CAMKK2 gene: NM_001270486.1, c.1614dup, (p. Gly539Argfs*3) was identified as a novel candidate MOV. This mutation influenced the improvement of metabolism after bariatric surgery. In conclusion, our data confirm the efficacy of WES combined with postoperative data in detecting novel candidate MOVs and c.1614dup (CAMKK2) might be a promising MOV, which needs further confirmation. This study enriches the human monogenic obesity mutation database and provides a scientific basis for clinically accurate diagnosis and treatment.
Collapse
Affiliation(s)
- Yan Wang
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Medical Research Center, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Chao Yang
- West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jun Wen
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Lingling Ju
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Zhengyun Ren
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Tongtong Zhang
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Medical Research Center, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Yanjun Liu
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
8
|
Zhang Z, Ruf-Zamojski F, Zamojski M, Bernard DJ, Chen X, Troyanskaya OG, Sealfon SC. Peak-agnostic high-resolution cis-regulatory circuitry mapping using single cell multiome data. Nucleic Acids Res 2024; 52:572-582. [PMID: 38084892 PMCID: PMC10810203 DOI: 10.1093/nar/gkad1166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/15/2023] [Accepted: 11/27/2023] [Indexed: 01/26/2024] Open
Abstract
Single same cell RNAseq/ATACseq multiome data provide unparalleled potential to develop high resolution maps of the cell-type specific transcriptional regulatory circuitry underlying gene expression. We present CREMA, a framework that recovers the full cis-regulatory circuitry by modeling gene expression and chromatin activity in individual cells without peak-calling or cell type labeling constraints. We demonstrate that CREMA overcomes the limitations of existing methods that fail to identify about half of functional regulatory elements which are outside the called chromatin 'peaks'. These circuit sites outside called peaks are shown to be important cell type specific functional regulatory loci, sufficient to distinguish individual cell types. Analysis of mouse pituitary data identifies a Gata2-circuit for the gonadotrope-enriched disease-associated Pcsk1 gene, which is experimentally validated by reduced gonadotrope expression in a gonadotrope conditional Gata2-knockout model. We present a web accessible human immune cell regulatory circuit resource, and provide CREMA as an R package.
Collapse
Affiliation(s)
- Zidong Zhang
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Frederique Ruf-Zamojski
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA
| | - Michel Zamojski
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA
| | - Daniel J Bernard
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Xi Chen
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY, USA
| | - Olga G Troyanskaya
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY, USA
- Department of Computer Science, Princeton University, Princeton, NJ, USA
| | - Stuart C Sealfon
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA
| |
Collapse
|
9
|
Kouidrat Y, Le Collen L, Vaxillaire M, Dechaume A, Toussaint B, Vaillant E, Amanzougarene S, Derhourhi M, Delemer B, Azahaf M, Froguel P, Bonnefond A. Dominant PDX1 deficiency causes highly penetrant diabetes at different ages, associated with obesity and exocrine pancreatic deficiency: Lessons for precision medicine. DIABETES & METABOLISM 2024; 50:101507. [PMID: 38141807 DOI: 10.1016/j.diabet.2023.101507] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
OBJECTIVE Heterozygous pathogenic or likely pathogenic (P/LP) PDX1 variants cause monogenic diabetes. We comprehensively examined the phenotypes of carriers of P/LP PDX1 variants, and delineated potential treatments that could be efficient in an objective of precision medicine. METHODS The study primarily involved a family harboring a novel P/LP PDX1 variant. We then conducted an analysis of documented carriers of P/LP PDX1 variants, from the Human Gene Mutation Database (HGMD), RaDiO study, and Type 2 Diabetes Knowledge Portal (T2DKP) including 87 K participants. RESULTS Within the family, we identified a P/LP PDX1 variant encoding p.G232S in four relatives. All of them exhibited diabetes, albeit with very different ages of onset (10-40 years), along with caudal pancreatic agenesis and childhood-onset obesity. In the HGMD, 79 % of carriers of a P/LP PDX1 variant displayed diabetes (with differing ages of onset from eight days of life to 67 years), 63 % exhibited pancreatic insufficiency and surprisingly 40 % had obesity. The impact of P/LP PDX1 variants on increased risk of type 2 diabetes mellitus was confirmed in the T2DKP. Dipeptidyl peptidase 4 inhibitor (DPP4i) and glucagon-like peptide-1 receptor agonist (GLP1-RA), enabled good glucose control without hypoglycemia and weight management. CONCLUSIONS This study reveals diverse clinical presentations among the carriers of a P/LP PDX1 variant, highlighting strong variations in diabetes onset, and unexpectedly high prevalence of obesity and pancreatic development abnormalities. Clinical data suggest that DPP4i and GLP1-RA may be the best effective treatments to manage both glucose and weight controls, opening new avenue in precision diabetic medicine.
Collapse
Affiliation(s)
- Youssef Kouidrat
- Department of Rehabilitation, Nutrition and Obesity, Berck Maritime Hospital, Greater Paris University Hospitals, AP-HP, Berck, France
| | - Lauriane Le Collen
- Inserm UMR1283, CNRS UMR8199, Pasteur Institute of Lille, European Genomic Institute for Diabetes, Université de Lille, Lille University Hospital, Cedex, Lille 59045, France; Department of Endocrinology Diabetology, University Hospital Center of Reims, Reims, France; Department of Clinical Genetic, University Hospital Center of Reims, Reims, France.
| | - Martine Vaxillaire
- Inserm UMR1283, CNRS UMR8199, Pasteur Institute of Lille, European Genomic Institute for Diabetes, Université de Lille, Lille University Hospital, Cedex, Lille 59045, France; University of Lille, Lille University Hospital, Lille, France
| | - Aurélie Dechaume
- Inserm UMR1283, CNRS UMR8199, Pasteur Institute of Lille, European Genomic Institute for Diabetes, Université de Lille, Lille University Hospital, Cedex, Lille 59045, France; University of Lille, Lille University Hospital, Lille, France
| | - Bénédicte Toussaint
- Inserm UMR1283, CNRS UMR8199, Pasteur Institute of Lille, European Genomic Institute for Diabetes, Université de Lille, Lille University Hospital, Cedex, Lille 59045, France; University of Lille, Lille University Hospital, Lille, France
| | - Emmanuel Vaillant
- Inserm UMR1283, CNRS UMR8199, Pasteur Institute of Lille, European Genomic Institute for Diabetes, Université de Lille, Lille University Hospital, Cedex, Lille 59045, France; University of Lille, Lille University Hospital, Lille, France
| | - Souhila Amanzougarene
- Inserm UMR1283, CNRS UMR8199, Pasteur Institute of Lille, European Genomic Institute for Diabetes, Université de Lille, Lille University Hospital, Cedex, Lille 59045, France; University of Lille, Lille University Hospital, Lille, France
| | - Mehdi Derhourhi
- Inserm UMR1283, CNRS UMR8199, Pasteur Institute of Lille, European Genomic Institute for Diabetes, Université de Lille, Lille University Hospital, Cedex, Lille 59045, France; University of Lille, Lille University Hospital, Lille, France
| | - Brigitte Delemer
- Department of Endocrinology Diabetology, University Hospital Center of Reims, Reims, France
| | - Mustapha Azahaf
- Department of Radiology, Groupement des Hôpitaux de l'Institut Catholique de Lille, Saint Philibert Hospital, Lille, France
| | - Philippe Froguel
- Inserm UMR1283, CNRS UMR8199, Pasteur Institute of Lille, European Genomic Institute for Diabetes, Université de Lille, Lille University Hospital, Cedex, Lille 59045, France; University of Lille, Lille University Hospital, Lille, France; Department of Metabolism, Imperial College London, Hammersmith Hospital, London, UK.
| | - Amélie Bonnefond
- Inserm UMR1283, CNRS UMR8199, Pasteur Institute of Lille, European Genomic Institute for Diabetes, Université de Lille, Lille University Hospital, Cedex, Lille 59045, France; University of Lille, Lille University Hospital, Lille, France; Department of Metabolism, Imperial College London, Hammersmith Hospital, London, UK.
| |
Collapse
|
10
|
Guijo B, Argente J, Martos-Moreno GÁ. The N221D variant in PCSK1 is highly prevalent in childhood obesity and can influence the metabolic profile. J Pediatr Endocrinol Metab 2023; 36:1140-1145. [PMID: 37877373 DOI: 10.1515/jpem-2023-0395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/09/2023] [Indexed: 10/26/2023]
Abstract
OBJECTIVES To study the prevalence and influence on metabolic profile of the prohormone-convertase-1 (PCSK1) N221D variant in childhood obesity, proven its role in the leptin-melanocortin signaling pathway as in proinsulin and other prohormone cleavage. METHODS Transversal study of 1066 children with obesity (mean age and BMI Z-score 10.38 ± 3.44 years and +4.38 ± 1.77, respectively), 51.4 % males, 54.4 % prepubertal, 71.5 % Caucasians and 20.8 % Latinos. Anthropometric and metabolic features were compared between patients carrying the N221D variant in PCSK1 and patients with no variants found after next generation sequencing analysis of 17 genes (CREBBP, CPE, HTR2C, KSR2, LEP, LEPR, MAGEL2, MC3R, MC4R, MRAP2, NCOA1, PCSK1, POMC, SH2B1, SIM1, TBX3 and TUB) involved in the leptin-melanocortin pathway. RESULTS No variants were found in 531 patients (49.8 %), while 68 patients carried the PCSK1 N221D variant (42 isolately, and 26 with at least one additional gene variant). Its prevalence was higher in Caucasians vs. Latinos (χ2 7.81; p<0.01). Patients carrying exclusively the PCSK1 N221D variant (n=42) showed lower insulinemia (p<0.05), HOMA index (p<0.05) and area under the curve for insulin in the oral glucose tolerance test (p<0.001) and higher WBISI (p<0.05) than patients with no variants, despite similar obesity severity, age, sex and ethnic distribution. CONCLUSIONS The N221D variant in PCSK1 is highly prevalent in childhood obesity, influenced by ethnicity. Indirect estimation of insulin resistance, based on insulinemia could be byassed in these patients and underestimate their type 2 diabetes mellitus risk.
Collapse
Affiliation(s)
- Blanca Guijo
- Departments of Pediatrics and Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
| | - Jesús Argente
- Departments of Pediatrics and Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de alimentación IMDEA, CEIUAM+CSIC, Madrid, Spain
| | - Gabriel Ángel Martos-Moreno
- Departments of Pediatrics and Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
11
|
Al-Humadi AW, Alabduljabbar K, Alsaqaaby MS, Talaee H, le Roux CW. Obesity Characteristics Are Poor Predictors of Genetic Mutations Associated with Obesity. J Clin Med 2023; 12:6396. [PMID: 37835041 PMCID: PMC10573901 DOI: 10.3390/jcm12196396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND The genetic contribution to obesity is substantial and may underpin the altered pathophysiology. One such pathway involves melanocortin signaling in the hypothalamus. Genetic variants can cause dysregulation in the central melanocortin pathway that can result in early onset of hyperphagia and obesity. Clinically identifying patients who are at risk of known genetic mutations is challenging. The main purpose of this study was to identify associations between the clinico-demographical characteristics and the presence of a genetic mutation associated with obesity. METHODS We tested samples from 238 adult patients with class III obesity between October 2021 to February 2023 using next-generation sequencing (NGS) (Illumina, NovaSeq 6000 Sequencing System). The results were classified as "no variant identified" or "variant identified". RESULTS 107 patients (45%) had one or more gene mutation in the leptin-melanocortin pathway. All variants were heterozygous. The patients with a gene mutation had a BMI of 48.4 ± 0.8 kg/m2 (mean ± SEM), and those without a gene mutation had a BMI of 49.4 ± 0.7 kg/m2 (p = 0.4). The mean age of onset of obesity in patients with a gene mutation was 13.9 ± 1.3 years and for those without gene mutations was 11.5 ± 0.9 years (p = 0.1). The incidence of hyperphagia as a child was also not predictive (p = 0.4). CONCLUSIONS Gene mutations associated with obesity in patients with a BMI > 40 kg/m2 are common. However, a patient's BMI, age of onset of obesity, or age of onset of hyperphagia did not help to differentiate which patients may be more likely to have genetic mutations associated with obesity.
Collapse
Affiliation(s)
- Ahmed W. Al-Humadi
- Diabetes Complications Research Centre, Conway Institute, University College Dublin, D04V1W8 Dublin, Ireland; (A.W.A.-H.); (K.A.); (M.S.A.); (H.T.)
- Department of Dentistry, Hilla University College, Babylon 510001, Iraq
| | - Khaled Alabduljabbar
- Diabetes Complications Research Centre, Conway Institute, University College Dublin, D04V1W8 Dublin, Ireland; (A.W.A.-H.); (K.A.); (M.S.A.); (H.T.)
- Department of Family Medicine and Polyclinics, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Moath S. Alsaqaaby
- Diabetes Complications Research Centre, Conway Institute, University College Dublin, D04V1W8 Dublin, Ireland; (A.W.A.-H.); (K.A.); (M.S.A.); (H.T.)
- Obesity, Endocrine and Metabolism Centre, King Fahad Medical City, Riyadh 11525, Saudi Arabia
| | - Hani Talaee
- Diabetes Complications Research Centre, Conway Institute, University College Dublin, D04V1W8 Dublin, Ireland; (A.W.A.-H.); (K.A.); (M.S.A.); (H.T.)
| | - Carel W. le Roux
- Diabetes Complications Research Centre, Conway Institute, University College Dublin, D04V1W8 Dublin, Ireland; (A.W.A.-H.); (K.A.); (M.S.A.); (H.T.)
| |
Collapse
|
12
|
Gao W, Liu L, Huh E, Gbahou F, Cecon E, Oshima M, Houzé L, Katsonis P, Hegron A, Fan Z, Hou G, Charpentier G, Boissel M, Derhourhi M, Marre M, Balkau B, Froguel P, Scharfmann R, Lichtarge O, Dam J, Bonnefond A, Liu J, Jockers R. Human GLP1R variants affecting GLP1R cell surface expression are associated with impaired glucose control and increased adiposity. Nat Metab 2023; 5:1673-1684. [PMID: 37709961 DOI: 10.1038/s42255-023-00889-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 08/09/2023] [Indexed: 09/16/2023]
Abstract
The glucagon-like peptide 1 receptor (GLP1R) is a major drug target with several agonists being prescribed in individuals with type 2 diabetes and obesity1,2. The impact of genetic variability of GLP1R on receptor function and its association with metabolic traits are unclear with conflicting reports. Here, we show an unexpected diversity of phenotypes ranging from defective cell surface expression to complete or pathway-specific gain of function (GoF) and loss of function (LoF), after performing a functional profiling of 60 GLP1R variants across four signalling pathways. The defective insulin secretion of GLP1R LoF variants is rescued by allosteric GLP1R ligands or high concentrations of exendin-4/semaglutide in INS-1 823/3 cells. Genetic association studies in 200,000 participants from the UK Biobank show that impaired GLP1R cell surface expression contributes to poor glucose control and increased adiposity with increased glycated haemoglobin A1c and body mass index. This study defines impaired GLP1R cell surface expression as a risk factor for traits associated with type 2 diabetes and obesity and provides potential treatment options for GLP1R LoF variant carriers.
Collapse
Affiliation(s)
- Wenwen Gao
- Université Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Lei Liu
- Université Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Eunna Huh
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, USA
| | - Florence Gbahou
- Université Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| | - Erika Cecon
- Université Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| | - Masaya Oshima
- Université Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| | - Ludivine Houzé
- Université Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| | - Panagiotis Katsonis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Alan Hegron
- Université Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec, Canada
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Zhiran Fan
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Guofei Hou
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Guillaume Charpentier
- CERITD (Centre d'Étude et de Recherche pour l'Intensification du Traitement du Diabète), Evry, France
| | - Mathilde Boissel
- University of Lille, Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France
| | - Mehdi Derhourhi
- University of Lille, Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France
| | - Michel Marre
- Institut Necker-Enfants Malades, INSERM, Université Paris Cité, Paris, France
- Clinique Ambroise Paré, Neuilly-sur-Seine, France
| | - Beverley Balkau
- Inserm U1018, Center for Research in Epidemiology and Population Health, Villejuif, France
- University Paris-Saclay, University Paris-Sud, Villejuif, France
| | - Philippe Froguel
- University of Lille, Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France
- Department of Metabolism, Imperial College London, London, UK
| | | | - Olivier Lichtarge
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Julie Dam
- Université Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| | - Amélie Bonnefond
- University of Lille, Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France
- Department of Metabolism, Imperial College London, London, UK
| | - Jianfeng Liu
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| | - Ralf Jockers
- Université Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France.
| |
Collapse
|
13
|
Velazquez-Roman J, Angulo-Zamudio UA, Leon-Sicairos N, Flores-Villaseñor H, Benitez-Baez M, Espinoza-Salomón A, Karam-León A, Villamil-Ramírez H, Canizales-Quinteros S, Macías-Kauffer L, Monroy-Higuera J, Acosta-Smith E, Canizalez-Roman A. Association of PCSK1 and PPARG1 Allelic Variants with Obesity and Metabolic Syndrome in Mexican Adults. Genes (Basel) 2023; 14:1775. [PMID: 37761915 PMCID: PMC10531047 DOI: 10.3390/genes14091775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Metabolic diseases, including obesity, diabetes, and metabolic syndrome, are among the most important public health challenges worldwide. Metabolic diseases are classified as multifactorial diseases in which genetic variants such as single-nucleotide polymorphisms (SNPs) may play an important role. The present study aimed to identify associations linking allelic variants of the PCSK1, TMEM18, GPX5, ZPR1, ZBTB16, and PPARG1 genes with anthropometric and biochemical traits and metabolic diseases (obesity or metabolic syndrome) in an adult population from northwestern Mexico. METHODS Blood samples were collected from 523 subjects, including 247 with normal weight, 276 with obesity, and 147 with metabolic syndrome. Anthropometric and biochemical characteristics were recorded, and single-nucleotide polymorphisms (SNPs) were genotyped by real-time PCR. RESULTS PCSK1 was significantly (p < 0.05) associated with BMI, weight, and waist-to-hip ratio; TMEM18 was significantly associated with systolic blood pressure and triglyceride levels; GPX5 was significantly associated with HDL cholesterol levels. In addition, PCSK1 was associated with obesity (p = 1.0 × 10-4) and metabolic syndrome (p = 3.0 × 10-3), whereas PPARG1 was associated with obesity (p = 0.044). CONCLUSIONS The associations found in this study, mainly between allelic variants of PCSK1 and metabolic traits, obesity, and metabolic syndrome, may represent a risk for developing metabolic diseases in adult subjects from northwestern Mexico.
Collapse
Affiliation(s)
- Jorge Velazquez-Roman
- School of Medicine, Autonomous University of Sinaloa, Culiacan Sinaloa 80019, Mexico; (J.V.-R.); (U.A.A.-Z.); (N.L.-S.); (H.F.-V.); (A.E.-S.); (E.A.-S.)
| | - Uriel A. Angulo-Zamudio
- School of Medicine, Autonomous University of Sinaloa, Culiacan Sinaloa 80019, Mexico; (J.V.-R.); (U.A.A.-Z.); (N.L.-S.); (H.F.-V.); (A.E.-S.); (E.A.-S.)
| | - Nidia Leon-Sicairos
- School of Medicine, Autonomous University of Sinaloa, Culiacan Sinaloa 80019, Mexico; (J.V.-R.); (U.A.A.-Z.); (N.L.-S.); (H.F.-V.); (A.E.-S.); (E.A.-S.)
- Pediatric Hospital of Sinaloa, Constitución 530, Jorge Almada, Culiacan Sinaloa 80200, Mexico
| | - Hector Flores-Villaseñor
- School of Medicine, Autonomous University of Sinaloa, Culiacan Sinaloa 80019, Mexico; (J.V.-R.); (U.A.A.-Z.); (N.L.-S.); (H.F.-V.); (A.E.-S.); (E.A.-S.)
- The Sinaloa State Public Health Laboratory, Secretariat of Health, Culiacan Sinaloa 80020, Mexico
| | - Miriam Benitez-Baez
- Programa de Doctorado, Posgrado Integral en Biotecnología, FCQB, UAS, Culiacan Sinaloa 80013, Mexico; (M.B.-B.); (A.K.-L.); (J.M.-H.)
| | - Ana Espinoza-Salomón
- School of Medicine, Autonomous University of Sinaloa, Culiacan Sinaloa 80019, Mexico; (J.V.-R.); (U.A.A.-Z.); (N.L.-S.); (H.F.-V.); (A.E.-S.); (E.A.-S.)
| | - Alejandra Karam-León
- Programa de Doctorado, Posgrado Integral en Biotecnología, FCQB, UAS, Culiacan Sinaloa 80013, Mexico; (M.B.-B.); (A.K.-L.); (J.M.-H.)
| | - Hugo Villamil-Ramírez
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM/INMEGEN, Mexico City 04510, Mexico; (H.V.-R.); (S.C.-Q.); (L.M.-K.)
| | - Samuel Canizales-Quinteros
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM/INMEGEN, Mexico City 04510, Mexico; (H.V.-R.); (S.C.-Q.); (L.M.-K.)
| | - Luis Macías-Kauffer
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM/INMEGEN, Mexico City 04510, Mexico; (H.V.-R.); (S.C.-Q.); (L.M.-K.)
| | - Jose Monroy-Higuera
- Programa de Doctorado, Posgrado Integral en Biotecnología, FCQB, UAS, Culiacan Sinaloa 80013, Mexico; (M.B.-B.); (A.K.-L.); (J.M.-H.)
| | - Erika Acosta-Smith
- School of Medicine, Autonomous University of Sinaloa, Culiacan Sinaloa 80019, Mexico; (J.V.-R.); (U.A.A.-Z.); (N.L.-S.); (H.F.-V.); (A.E.-S.); (E.A.-S.)
| | - Adrian Canizalez-Roman
- School of Medicine, Autonomous University of Sinaloa, Culiacan Sinaloa 80019, Mexico; (J.V.-R.); (U.A.A.-Z.); (N.L.-S.); (H.F.-V.); (A.E.-S.); (E.A.-S.)
- The Women’s Hospital, Secretariat of Health, Culiacan Sinaloa 80020, Mexico
| |
Collapse
|
14
|
Körner A, Stein R, Landgraf K. Beyond genetic screening-functionality-based precision medicine in monogenic obesity. Lancet Diabetes Endocrinol 2023; 11:143-144. [PMID: 36822741 DOI: 10.1016/s2213-8587(23)00031-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 02/25/2023]
Affiliation(s)
- Antje Körner
- Helmholtz Institute for Metabolic, Obesity, and Vascular Research, Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany; University of Leipzig, Medical Faculty, Leipzig University Hospital for Children and Adolescents, Center for Pediatric Research, Leipzig, Germany.
| | - Robert Stein
- Helmholtz Institute for Metabolic, Obesity, and Vascular Research, Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany; University of Leipzig, Medical Faculty, Leipzig University Hospital for Children and Adolescents, Center for Pediatric Research, Leipzig, Germany
| | - Kathrin Landgraf
- University of Leipzig, Medical Faculty, Leipzig University Hospital for Children and Adolescents, Center for Pediatric Research, Leipzig, Germany
| |
Collapse
|