1
|
Hossain MM, Soha K, Rahman A, Auwal A, Pronoy TUH, Rashel KM, Nurujjaman M, Rahman H, Roy TG, Khanam JA, Islam F. Rhodium complex [RhLI 2]I: a novel anticancer agent inducing tumor inhibition and apoptosis. Discov Oncol 2024; 15:782. [PMID: 39692939 DOI: 10.1007/s12672-024-01632-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/25/2024] [Indexed: 12/19/2024] Open
Abstract
Numerous chemotherapeutic agents are currently employed in cancer treatment, but many are associated with significant side effects. This study aims to identify a novel anticancer drug that minimizes or eliminates these adverse effects. The anticancer activity of the Rhodium (III) complex cis-[RhLI2]I was evaluated through both in vivo and in vitro functional assays. Apoptosis in cancer cells post-treatment was assessed using microscopy and gene expression analysis. In cytotoxicity screening via the brine shrimp lethality bioassay, the compound exhibited an LC50 value of 25.90 µg/mL (P < 0.001). It also achieved an 88.96% inhibition of cell growth (P < 0.001), an 82.39% increase in lifespan (P < 0.001), and a significant reduction in tumor weight at a dosage of 200 µg/kg in Ehrlich ascites carcinoma (EAC)-bearing Swiss albino mice. Restoration of hematological parameters, such as RBC, WBC, and hemoglobin levels, was observed in treated tumor-bearing mice compared to untreated EAC-bearing mice. The compound inhibited the growth and proliferation of breast cancer (MCF7) cells in a dose-dependent manner, achieving a maximum inhibition of 88.9% at 200 µg/mL. Apoptotic induction in MCF7 cells occurred through the upregulation of p53, Bax, caspase-3, -8, and -9, alongside the downregulation of the anti-apoptotic protein Bcl-2. No long-term adverse effects on hematological or biochemical parameters or tissue levels were observed in the mice. Given these findings, this compound demonstrates significant cytotoxic effects and has the potential to serve as a promising chemotherapeutic agent, warranting further investigation at more advanced stages.
Collapse
Affiliation(s)
- M Matakabbir Hossain
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Kazi Soha
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Arifur Rahman
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Abdul Auwal
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Tasfik Ul Haque Pronoy
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - K M Rashel
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - M Nurujjaman
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Habibur Rahman
- Department of Chemistry, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Tapashi G Roy
- Department of Chemistry, Faculty of Science, University of Chittagong, Chattogram, 4331, Bangladesh
| | - Jahan Ara Khanam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Farhadul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh.
- School of Medicine and Dentistry, Griffith University, Gold Coast Campus, Queenslan, 4222, Australia.
| |
Collapse
|
2
|
Khatun M, Islam F, Gopalan V, Rahman MM, Zuberi N, Khatun L, Rakib MA, Islam MA, Lam AKY, Khanam JA. 2', 4'-dihydroxy-3, 4-methylenedioxychalcone Activate Mitochondrial Apoptosis of Ehrlich Ascites Carcinoma Cells. CURRENT DRUG THERAPY 2020. [DOI: 10.2174/1574885514666191211122437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Development of effective cancer-chemotherapy is the most challenging
field due to the toxicity of chemo-agents.
Objective:
As chalcone has been known to have pharmacological applications, here the aim is to
synthesized three chalcone derivatives, 2',4'-dihydroxy-3,4-methylenedioxychalcone (C1), 2'-hydroxy-
2,4, 6-trimethoxychalcone (C2) and 2'-hydroxy-4-methylchalcone (C3) and investigate their anti-cancer
properties against Ehrlich Ascites Carcinoma (EAC) cell.
Method:
Anticancer properties against EAC cells were studied by examining growth inhibition,
MTT assays, tumour-bearing mice survival, tumour weight measurement and haematological profiles.
Moreover, apoptosis of EAC cells was investigated by fluorescence microscopy, flowcytometry
and DNA fragmentation assays. Expression of apoptosis related genes were studied by
reverse transcriptase-PCR (RT-PCR).
Results:
Among the compounds, C1 exhibited highest cell growth inhibition at 200 mg/kg/day
(81.71%; P < 0.01). C1 treatment also increased the life span of EAC-bearing mice (82.60%, P <
0.05) with the reduction of tumour burden (<) compared to untreated EAC-bearing
mice. In vitro study indicated that C1 killed EAC-cells in a dose-dependent manner and induced
mitochondria-mediated apoptotic pathways. In addition, C1 treated cells exhibited increased apoptotic
features such as membrane blebbing, chromatin condensation, and nuclear fragmentation after
Hoechst 33342 staining. Increased fragmentation of DNA in gel electrophoresis followed by C1
treatment further confirmed apoptosis of EAC cells. EAC cells treated with C1 showed reduced
Bcl-2 expression in contrast to notable upregulation of p53 and Bax expression. It implied that C1
could reinstate the expression of pro-apoptotic tumour suppressor and inhibit anti-apoptotic genes.
Conclusions:
Thus, C1 showed significant growth inhibitory properties and induced apoptosis of
EAC cells.
Collapse
Affiliation(s)
- Mahbuba Khatun
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Farhadul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Vinod Gopalan
- Cancer Molecular Pathology, School of Medicine, Griffith University, Gold Coast, QLD-4222, Australia
| | - Md. Motiar Rahman
- Department of Chemistry, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Natasha Zuberi
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Laboni Khatun
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Md. Abdur Rakib
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Md. Azizul Islam
- Department of Chemistry, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Alfred King-Yin Lam
- Cancer Molecular Pathology, School of Medicine, Griffith University, Gold Coast, QLD-4222, Australia
| | - Jahan Ara Khanam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh
| |
Collapse
|
3
|
Karakurt T, Tahtaci H, Subasi NT, Er M, Ağar E. Novel aldehyde and thiosemicarbazone derivatives: Synthesis, spectroscopic characterization, structural studies and molecular docking studies. J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2016.07.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
4
|
Karagoz I, Ozaslan M, Guler I, Uyar C, Yalim T, Kazanci U, Aslan A, Cakir A. In vivo Antitumoral Effect of Diffractaic Acid from Lichen Metabolites on Swiss Albino Mice with Ehrlich Ascites Carcinoma: An Experimental Study. INT J PHARMACOL 2014. [DOI: 10.3923/ijp.2014.307.314] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|