1
|
Çobandede Z, Çulha M. Ultrasound stimulated piezoelectric barium titanate and boron nitride nanotubes in nonconductive poly- ε-caprolactone nanofibrous scaffold for bone tissue engineering. NANOTECHNOLOGY 2024; 35:135101. [PMID: 38081081 DOI: 10.1088/1361-6528/ad1446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/10/2023] [Indexed: 01/10/2024]
Abstract
Nanomaterials can provide unique solutions for the problems experienced in tissue engineering by improving a scaffold's physico-bio-chemical properties. With its piezoelectric property, bone is an active tissue with easy adaptation and remodeling through complicated mechanisms of electromechanical operations. Although poly(ε-caprolactone) (PCL) is an excellent polymer for bone tissue engineering, it is lack of conductivity. In this study, piezoelectric barium titanates (BaTiO3) and boron nitride nanotubes (BNNTs) are used as ultrasound (US) stimulated piezoelectric components in PCL to mimic piezoelectric nature of bone tissue. Electric-responsive Human Osteoblast cells on the scaffolds were stimulated by applying low-frequency US during cell growth. Biocompatibility, cell adhesion, alkaline phosphatase activities and mineralization of osteoblast cells on piezo-composite scaffolds were investigated. BaTiO3or BNNTs as reinforcement agents improved physical and mechanical properties of PCL scaffolds.In vitrostudies show that the use of BaTiO3or BNNTs as additives in non-conductive scaffolds significantly induces and increases the osteogenic activities even without US stimulation. Although BaTiO3is one of the best piezoelectric materials, the improvement is more dramatic in the case of BNNTs with the increased mineralization, and excellent chemical and mechanical properties.
Collapse
Affiliation(s)
- Zehra Çobandede
- Department of Genetics and Bioenginering, Yeditepe University, Atasehir, Istanbul, Turkey
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul, 34956, Turkey
| | - Mustafa Çulha
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul, 34956, Turkey
- Department of Chemistry and Biochemistry, Augusta University, Augusta, GA, United States of America
| |
Collapse
|
2
|
De I, Sharma P, Singh M. Emerging approaches of neural regeneration using physical stimulations solely or coupled with smart piezoelectric nano-biomaterials. Eur J Pharm Biopharm 2022; 173:73-91. [DOI: 10.1016/j.ejpb.2022.02.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 01/20/2023]
|
3
|
Day RN, Day KH, Pavalko FM. Direct visualization by FRET-FLIM of a putative mechanosome complex involving Src, Pyk2 and MBD2 in living MLO-Y4 cells. PLoS One 2021; 16:e0261660. [PMID: 34941939 PMCID: PMC8699642 DOI: 10.1371/journal.pone.0261660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 12/08/2021] [Indexed: 01/12/2023] Open
Abstract
Earlier, we proposed the “mechanosome” concept as a testable model for understanding how mechanical stimuli detected by cell surface adhesion molecules are transmitted to modulate gene expression inside cells. Here, for the first time we document a putative mechanosome involving Src, Pyk2 and MBD2 in MLO-Y4 osteocytes with high spatial resolution using FRET-FLIM. Src-Pyk2 complexes were concentrated at the periphery of focal adhesions and the peri-nuclear region. Pyk2-MBD2 complexes were located primarily in the nucleus and peri-nuclear region. Lifetime measurements indicated that Src and MBD2 did not interact directly. Finally, mechanical stimulation by fluid flow induced apparent accumulation of Src-Pyk2 protein complexes in the peri-nuclear/nuclear region, consistent with the proposed behavior of a mechanosome in response to a mechanical stimulus.
Collapse
Affiliation(s)
- Richard N. Day
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Kathleen H. Day
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Fredrick M. Pavalko
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
4
|
Carter A, Popowski K, Cheng K, Greenbaum A, Ligler FS, Moatti A. Enhancement of Bone Regeneration Through the Converse Piezoelectric Effect, A Novel Approach for Applying Mechanical Stimulation. Bioelectricity 2021; 3:255-271. [PMID: 35018335 PMCID: PMC8742263 DOI: 10.1089/bioe.2021.0019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Serious bone injuries have devastating effects on the lives of patients including limiting working ability and high cost. Orthopedic implants can aid in healing injuries to an extent that exceeds the natural regenerative capabilities of bone to repair fractures or large bone defects. Autografts and allografts are the standard implants used, but disadvantages such as donor site complications, a limited quantity of transplantable bone, and high costs have led to an increased demand for synthetic bone graft substitutes. However, replicating the complex physiological properties of biological bone, much less recapitulating its complex tissue functions, is challenging. Extensive efforts to design biocompatible implants that mimic the natural healing processes in bone have led to the investigation of piezoelectric smart materials because the bone has natural piezoelectric properties. Piezoelectric materials facilitate bone regeneration either by accumulating electric charge in response to mechanical stress, which mimics bioelectric signals through the direct piezoelectric effect or by providing mechanical stimulation in response to electrical stimulation through the converse piezoelectric effect. Although both effects are beneficial, the converse piezoelectric effect can address bone atrophy from stress shielding and immobility by improving the mechanical response of a healing defect. Mechanical stimulation has a positive impact on bone regeneration by activating cellular pathways that increase bone formation and decrease bone resorption. This review will highlight the potential of the converse piezoelectric effect to enhance bone regeneration by discussing the activation of beneficial cellular pathways, the properties of piezoelectric biomaterials, and the potential for the more effective administration of the converse piezoelectric effect using wireless control.
Collapse
Affiliation(s)
- Amber Carter
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Kristen Popowski
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Ke Cheng
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina, USA
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina, USA
| | - Alon Greenbaum
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina, USA
| | - Frances S. Ligler
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina, USA
| | - Adele Moatti
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
5
|
McCarthy C, Camci-Unal G. Low Intensity Pulsed Ultrasound for Bone Tissue Engineering. MICROMACHINES 2021; 12:1488. [PMID: 34945337 PMCID: PMC8707172 DOI: 10.3390/mi12121488] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/24/2021] [Accepted: 11/28/2021] [Indexed: 12/16/2022]
Abstract
As explained by Wolff's law and the mechanostat hypothesis, mechanical stimulation can be used to promote bone formation. Low intensity pulsed ultrasound (LIPUS) is a source of mechanical stimulation that can activate the integrin/phosphatidylinositol 3-OH kinase/Akt pathway and upregulate osteogenic proteins through the production of cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2). This paper analyzes the results of in vitro and in vivo studies that have evaluated the effects of LIPUS on cell behavior within three-dimensional (3D) titanium, ceramic, and hydrogel scaffolds. We focus specifically on cell morphology and attachment, cell proliferation and viability, osteogenic differentiation, mineralization, bone volume, and osseointegration. As shown by upregulated levels of alkaline phosphatase and osteocalcin, increased mineral deposition, improved cell ingrowth, greater scaffold pore occupancy by bone tissue, and superior vascularization, LIPUS generally has a positive effect and promotes bone formation within engineered scaffolds. Additionally, LIPUS can have synergistic effects by producing the piezoelectric effect and enhancing the benefits of 3D hydrogel encapsulation, growth factor delivery, and scaffold modification. Additional research should be conducted to optimize the ultrasound parameters and evaluate the effects of LIPUS with other types of scaffold materials and cell types.
Collapse
Affiliation(s)
- Colleen McCarthy
- Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA;
| | - Gulden Camci-Unal
- Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA;
- Department of Surgery, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01605, USA
| |
Collapse
|
6
|
Fluid-structure interaction (FSI) modeling of bone marrow through trabecular bone structure under compression. Biomech Model Mechanobiol 2021; 20:957-968. [PMID: 33547975 DOI: 10.1007/s10237-021-01423-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 01/10/2021] [Indexed: 10/22/2022]
Abstract
The present study has sought to investigate the fluid characteristic and mechanical properties of trabecular bone using fluid-structure interaction (FSI) approach under different trabecular bone orientations. This method imposed on trabecular bone structure at both longitudinal and transverse orientations to identify effects on shear stress, permeability, stiffness and stress regarded to the trabeculae. Sixteen FSI models were performed on different range trabecular cubes of 27 mm3 with eight models developed for each longitudinal and transverse direction. Results show that there was a moderate correlation between permeability and porosity, and surface area in the longitudinal and transverse orientations. For the longitudinal orientation, the permeability values varied between 3.66 × 10-8 and 1.9 × 10-7 and the sheer stress values varied between 0.05 and 1.8 Pa, whilst for the transverse orientation, the permeability values varied between 5.95 × 10-10 and 1.78 × 10-8 and the shear stress values varied between 0.04 and 3.1 Pa. Here, transverse orientation limits the fluid flow from passing through the trabeculae due to high shear stress disturbance generated within the trabecular bone region. Compared to physiological loading direction (longitudinal orientation), permeability is higher within the range known to trigger a response in bone cells. Additionally, shear stresses also increase with bone surface area. This study suggests the shear stress within bone marrow in real trabecular architecture could provide the mechanical signal to marrow cells that leads to bone anabolism and can depend on trabecular orientation.
Collapse
|
7
|
JIANG M, SHEN Q, ZHOU Y, REN W, CHAI M, ZHOU Y, TAN WS. Fluid shear stress and endothelial cells synergistically promote osteogenesis of mesenchymal stem cells via integrin β1-FAK-ERK1/2 pathway. Turk J Biol 2021; 45:683-694. [PMID: 35068949 PMCID: PMC8733951 DOI: 10.3906/biy-2104-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 10/26/2021] [Indexed: 02/05/2023] Open
Abstract
Prevascularization and mechanical stimulation have been reported as effective methods for the construction of functional bone tissue. However, their combined effects on osteogenic differentiation and its mechanism remain to be explored. Here, the effects of fluid shear stress (FSS) on osteogenic differentiation of rat bone-marrow-derived mesenchymal stem cells (BMSCs) when cocultured with human umbilical vein endothelial cells (HUVECs) were investigated, and underlying signaling mechanisms were further explored. FSS stimulation for 1-4 h/day increased alkaline phosphatase (ALP) activity and calcium deposition in coculture systems and promoted the proliferation of cocultured cells. FSS stimulation for 2 h/day was selected as the optimized protocol according to osteogenesis in the coculture. In this situation, the mRNA levels of ALP, runt-related transcriptional factor 2 (Runx2) and osteocalcin (OCN), and protein levels of OCN and osteopontin (OPN) in BMSCs were upregulated. Furthermore, FSS and coculture with HUVECs synergistically increased integrin β1 expression in BMSCs and further activated focal adhesion kinases (FAKs) and downstream extracellular signal-related kinase (ERK), leading to the enhancement of Runx2 expression. Blocking the phosphorylation of FAK abrogated FSS-induced ERK phosphorylation and inhibited osteogenesis of cocultured BMSCs. These results revealed that FSS and coculture with HUVECs synergistically promotes the osteogenesis of BMSCs, which was mediated by the integrin β1-FAK-ERK signaling pathway.
Collapse
Affiliation(s)
- Mingli JIANG
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, ShanghaiChina
| | - Qihua SHEN
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, ShanghaiChina
| | - Yi ZHOU
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, ShanghaiChina
| | - Wenxia REN
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, ShanghaiChina
| | - Miaomiao CHAI
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, ShanghaiChina
| | - Yan ZHOU
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, ShanghaiChina
- * To whom correspondence should be addressed. E-mail: * Correspondence:
| | - Wen-Song TAN
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, ShanghaiChina
| |
Collapse
|
8
|
Abstract
Bone is one of the most highly adaptive tissues in the body, possessing the capability to alter its morphology and function in response to stimuli in its surrounding environment. The ability of bone to sense and convert external mechanical stimuli into a biochemical response, which ultimately alters the phenotype and function of the cell, is described as mechanotransduction. This review aims to describe the fundamental physiology and biomechanisms that occur to induce osteogenic adaptation of a cell following application of a physical stimulus. Considerable developments have been made in recent years in our understanding of how cells orchestrate this complex interplay of processes, and have become the focus of research in osteogenesis. We will discuss current areas of preclinical and clinical research exploring the harnessing of mechanotransductive properties of cells and applying them therapeutically, both in the context of fracture healing and de novo bone formation in situations such as nonunion. Cite this article: Bone Joint Res 2019;9(1):1–14.
Collapse
|
9
|
Hadida M, Marchat D. Strategy for achieving standardized bone models. Biotechnol Bioeng 2019; 117:251-271. [PMID: 31531968 PMCID: PMC6915912 DOI: 10.1002/bit.27171] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 12/24/2022]
Abstract
Reliably producing functional in vitro organ models, such as organ-on-chip systems, has the potential to considerably advance biology research, drug development time, and resource efficiency. However, despite the ongoing major progress in the field, three-dimensional bone tissue models remain elusive. In this review, we specifically investigate the control of perfusion flow effects as the missing link between isolated culture systems and scientifically exploitable bone models and propose a roadmap toward this goal.
Collapse
Affiliation(s)
- Mikhael Hadida
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, Saint-Etienne, France
| | - David Marchat
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, Saint-Etienne, France
| |
Collapse
|
10
|
Liu W, Chen B, Zheng Y, Shi Y, Shi Z. Effect of Platelet-rich Plasma on Implant Bone Defects in Rabbits Through the FAK/PI3K/AKT Signaling Pathway. Open Life Sci 2019; 14:311-317. [PMID: 33817164 PMCID: PMC7874784 DOI: 10.1515/biol-2019-0034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 03/14/2019] [Indexed: 01/08/2023] Open
Abstract
Platelet-rich plasma (PRP) has been shown to be a beneficial growth factor for bone tissue healing and is used in implantology. The aim of this study was to investigate the effects of PRP on bone defects in rabbits. Twenty rabbits were used to establish the implant bone defect model in this study. An intrabony defect (5mm × 5mm × 3mm) was created in alveolar bone in the lower jar of each rabbit. The wound was treated with PRP. The expression of platelet-derived growth factor BB (PDGFBB) was assessed by enzyme-linked immunosorbent assay (ELISA). Focal adhesion kinase (FAK) and related phosphatidylinositol 3-kinase (PI3K)/AKT (protein kinase B) levels were measured by Western blot. The results show that PRP could significantly improve the bone healing process when compared with control, and 10% PRP could markedly increase fibroblast proliferation 48-h post treatment. PDGFBB was higher in the PRP group than that in the control group. PRP treatment also could elevate the phosphorylation of FAK and PI3K/AKT, although the inhibitor of PDGFR could reverse this trend. These results suggest that PRP treatment improves the bone healing process through the FAK/PI3K/AKT pathway.
Collapse
Affiliation(s)
- Wei Liu
- Department of Stomatology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Ben Chen
- Department of Stomatology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Youyang Zheng
- Department of Stomatology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Yuehua Shi
- School of Stomatology, Zhejiang Chinese Medical University, Binwen Road, Hangzhou, 310053, China
| | - Zhuojin Shi
- School of Stomatology, Zhejiang Chinese Medical University, Binwen Road, Hangzhou, 310053, China
| |
Collapse
|
11
|
Emon B, Bauer J, Jain Y, Jung B, Saif T. Biophysics of Tumor Microenvironment and Cancer Metastasis - A Mini Review. Comput Struct Biotechnol J 2018; 16:279-287. [PMID: 30128085 PMCID: PMC6097544 DOI: 10.1016/j.csbj.2018.07.003] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 07/20/2018] [Accepted: 07/21/2018] [Indexed: 02/07/2023] Open
Abstract
The role of tumor microenvironment in cancer progression is gaining significant attention. It is realized that cancer cells and the corresponding stroma co-evolve with time. Cancer cells recruit and transform the stromal cells, which in turn remodel the extra cellular matrix of the stroma. This complex interaction between the stroma and the cancer cells results in a dynamic feed-forward/feed-back loop with biochemical and biophysical cues that assist metastatic transition of the cancer cells. Although biochemistry has long been studied for the understanding of cancer progression, biophysical signaling is emerging as a critical paradigm determining cancer metastasis. In this mini review, we discuss the role of one of the biophysical cues, mostly the mechanical stiffness of tumor microenvironment, in cancer progression and its clinical implications.
Collapse
Key Words
- ADAMs, Adamalysins
- ANGPT2, Angiopoietin 2
- Activin/TGFβ
- CAF, Cancer associated fibroblast
- CSF-1, Colony stimulating factor 1
- CTGF, Connective tissue growth factor
- CYR61/CCN1, Cysteine-rich angiogenic inducer 61/CCN family member 1
- Cancer
- ECM stiffness
- ECM, Extracellular matrix
- EGF, Epidermal growth factor
- EMT, Epithelial to mesenchymal transition
- FGF, Fibroblast growth factor
- Growth factors
- HGF/SF, Hepatocyte growth factor/Scatter factor
- IGFs, Insulin-like growth factors
- IL-13, Interleukin-13
- IL-33, Interleukin-33
- IL-6, Interleukin-6
- KGF, Keratinocyte growth factor, also FGF7
- LOX, Lysyl Oxidase
- MMPs, Matrix metalloproteinases
- Metastasis
- NO, Nitric oxide
- SDF-1/CXCL12, Stromal cell-derived factor 1/C-X-C motif chemokine 12
- TACs, Tumor-associated collagen signatures
- TGFβ, Transforming growth factor β
- TNF-α, Tumor necrosis factor-α
- Tumor biophysics
- VEGF, Vascular endothelial growth factor
- α-SMA, α-Smooth muscle actin
Collapse
Affiliation(s)
- Bashar Emon
- Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, United States
| | - Jessica Bauer
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, United States
| | - Yasna Jain
- Department of Architecture, BRAC University, Dhaka
| | - Barbara Jung
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, United States
| | - Taher Saif
- Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, United States
- Bioengineering, University of Illinois at Urbana-Champaign, United States
| |
Collapse
|
12
|
Abstract
Articles that update the state of knowledge regarding osteoporosis run the risk of quickly becoming obsolete because research and studies on osteoporosis today are arousing great interest among researchers, the pharmaceutical and medical equipment industries, governments and even WHO. All orthopedists know about osteoporosis because of its most deleterious effect: osteoporotic fracture. Osteoporosis without fractures does not arouse suspicion because this is a pathological condition with a nonspecific clinical profile. Osteoporotic fractures have an economic cost (from treatment), a social cost (from its sequelae) and a medical cost (from deaths). Many fractures could be avoided through diagnosing osteoporosis prior to the first fracture and thus many temporary and permanent disabilities could be avoided and many lives saved. Awareness of the risk factors for osteoporosis raises suspicions and bone densitometry aids in diagnosis. Treatment should be based on the physiopathology of the disease. Hence, for prevention or treatment of osteoporosis, the activity of osteoclasts should be diminished or the activity of osteoblasts should be increased, or both. Treatment that reduces the incidence of fractures by improving the bone geometry and microarchitecture would be ideal. Newly formed bone tissue needs to have good cell and matrix quality, normal mineralization, a good ratio between mineralized (mechanically resistant) and non-mineralized (flexible) bone, and no accumulated damage. The ideal treatment should have a positive remodeling rate and fast and long-lasting therapeutic effects. Such effects need to be easily detectable. They need to be safe.
Collapse
|