1
|
Komatsu D, Cabrera ARE, Quevedo BV, Asami J, Cristina Motta A, de Moraes SC, Duarte MAT, Hausen MDA, Aparecida de Rezende Duek E. Meniscal repair with additive manufacture of bioresorbable polymer: From physicochemical characterization to implantation of 3D printed poly (L-co-D, L lactide-co-trimethylene carbonate) with autologous stem cells in rabbits. J Biomater Appl 2024; 39:66-79. [PMID: 38646887 DOI: 10.1177/08853282241248517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Three-dimensional (3D) structures are actually the state-of-the-art technique to create porous scaffolds for tissue engineering. Since regeneration in cartilage tissue is limited due to intrinsic cellular properties this study aims to develop and characterize three-dimensional porous scaffolds of poly (L-co-D, L lactide-co-trimethylene carbonate), PLDLA-TMC, obtained by 3D fiber deposition technique. The PLDLA-TMC terpolymer scaffolds (70:30), were obtained and characterized by scanning electron microscopy, gel permeation chromatography, differential scanning calorimetry, thermal gravimetric analysis, compression mechanical testing and study on in vitro degradation, which showed its amorphous characteristics, cylindrical geometry, and interconnected pores. The in vitro degradation study showed significant loss of mechanical properties compatible with a decrease in molar mass, accompanied by changes in morphology. The histocompatibility association of mesenchymal stem cells from rabbit's bone marrow, and PLDLA-TMC scaffolds, were evaluated in the meniscus regeneration, proving the potential of cell culture at in vivo tissue regeneration. Nine New Zealand rabbits underwent total medial meniscectomy, yielding three treatments: implantation of the seeded PLDLA-TMC scaffold, implantation of the unseeded PLDLA-TMC and negative control (defect without any implant). After 24 weeks, the results revealed the presence of fibrocartilage in the animals treated with polymer. However, the regeneration obtained with the seeded PLDLA-TMC scaffolds with mesenchymal stem cells had become intimal to mature fibrocartilaginous tissue of normal meniscus both macroscopically and histologically. This study demonstrated the effectiveness of the PLDLA-TMC scaffold in meniscus regeneration and the potential of mesenchymal stem cells in tissue engineering, without the use of growth factors. It is concluded that bioresorbable polymers represent a promising alternative for tissue regeneration.
Collapse
Affiliation(s)
- Daniel Komatsu
- Laboratory of Biomaterials, Faculty of Medical Sciences and Health, Pontifical Catholic University of São Paulo (PUC-SP), Sorocaba, Brazil
| | | | - Bruna Vanessa Quevedo
- Laboratory of Biomaterials, Faculty of Medical Sciences and Health, Pontifical Catholic University of São Paulo (PUC-SP), Sorocaba, Brazil
- Post-Graduation Program in Materials Sciences (PPGCM), Federal University of São Carlos (UFSCar), Sorocaba, Brazil
| | - Jessica Asami
- Laboratory of Biomaterials, Faculty of Medical Sciences and Health, Pontifical Catholic University of São Paulo (PUC-SP), Sorocaba, Brazil
- Post-Graduation Program of School of Mechanical Engineering (FEM), University of Campinas (UNICAMP), Campinas, Brazil
| | - Adriana Cristina Motta
- Laboratory of Biomaterials, Faculty of Medical Sciences and Health, Pontifical Catholic University of São Paulo (PUC-SP), Sorocaba, Brazil
| | | | | | - Moema de Alencar Hausen
- Laboratory of Biomaterials, Faculty of Medical Sciences and Health, Pontifical Catholic University of São Paulo (PUC-SP), Sorocaba, Brazil
- Post-Graduation Program of Biomaterials and Regenerative Medicine (PPGBMR), Surgery Department, PUC-SP, Sorocaba, Brazil
| | - Eliana Aparecida de Rezende Duek
- Laboratory of Biomaterials, Faculty of Medical Sciences and Health, Pontifical Catholic University of São Paulo (PUC-SP), Sorocaba, Brazil
- Post-Graduation Program of School of Mechanical Engineering (FEM), University of Campinas (UNICAMP), Campinas, Brazil
- Post-Graduation Program in Materials Sciences (PPGCM), Federal University of São Carlos (UFSCar), Sorocaba, Brazil
- Post-Graduation Program of Biomaterials and Regenerative Medicine (PPGBMR), Surgery Department, PUC-SP, Sorocaba, Brazil
| |
Collapse
|
2
|
Should the meniscal height be considered for preoperative sizing in meniscal transplantation? Knee Surg Sports Traumatol Arthrosc 2018; 26:772-780. [PMID: 28233022 PMCID: PMC5847198 DOI: 10.1007/s00167-017-4461-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 01/30/2017] [Indexed: 11/20/2022]
Abstract
PURPOSE AND HYPOTHESIS In preoperative sizing for meniscal transplantation, most authors take into consideration the length and width of the original meniscus, but not its height. This study aimed at evaluating (1) whether the meniscal height is associated with the meniscal length and width, (2) whether the heights of the meniscal segments are associated with the individual's anthropometric data, (3) whether the heights of the meniscal segments are associated with each other in the same meniscus, and (4) the degree of symmetry of the meniscal dimensions between the right and left knees. METHODS In this cross-sectional, observational study, two independent radiologists measured the meniscal length, width and height in knee magnetic resonance imaging scans obtained from 25 patients with patello-femoral pain syndrome. Reproducibility of measurements was calculated with intraclass correlation coefficients. Associations between the anthropometric data and the meniscal measurements, the meniscal length and width versus height, and the heights of the meniscal segments in the same meniscus were examined with Pearson's correlation. RESULTS Inter-observer reliability was excellent (>0.8) for length and height and good (0.6-0.8) for width measurements. There was also excellent agreement (>0.8) for the length and width of the menisci in the right and left knees. The heights of the horns of the lateral meniscus showed good agreement (0.6-0.8), while the heights of the other meniscal segments had excellent agreement between the sides (>0.8). There were significant associations with generally low (r < 0.5) correlation between the heights of the meniscal segments and the lengths and widths of the menisci, between the meniscal height and anthropometric data, and between the heights of the meniscal segments in the same meniscus. Correlations between anthropometric data and meniscal length and width were generally high (r > 0.7). CONCLUSIONS There was excellent agreement between the meniscal dimensions of the right and left knees, and a weak association between the meniscal height with the meniscal width and length, between the height of the menisci with anthropometric data and between the heights of the segments in the same meniscus. The height of the meniscal segments may be a new variable in preoperative meniscal measurement.
Collapse
|
3
|
Esposito AR, Moda M, Cattani SMDM, de Santana GM, Barbieri JA, Munhoz MM, Cardoso TP, Barbo MLP, Russo T, D'Amora U, Gloria A, Ambrosio L, Duek EADR. PLDLA/PCL-T Scaffold for Meniscus Tissue Engineering. Biores Open Access 2013; 2:138-47. [PMID: 23593566 PMCID: PMC3620496 DOI: 10.1089/biores.2012.0293] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The inability of the avascular region of the meniscus to regenerate has led to the use of tissue engineering to treat meniscal injuries. The aim of this study was to evaluate the ability of fibrochondrocytes preseeded on PLDLA/PCL-T [poly(L-co-D,L-lactic acid)/poly(caprolactone-triol)] scaffolds to stimulate regeneration of the whole meniscus. Porous PLDLA/PCL-T (90/10) scaffolds were obtained by solvent casting and particulate leaching. Compressive modulus of 9.5±1.0 MPa and maximum stress of 4.7±0.9 MPa were evaluated. Fibrochondrocytes from rabbit menisci were isolated, seeded directly on the scaffolds, and cultured for 21 days. New Zealand rabbits underwent total meniscectomy, after which implants consisting of cell-free scaffolds or cell-seeded scaffolds were introduced into the medial knee meniscus; the negative control group consisted of rabbits that received no implant. Macroscopic and histological evaluations of the neomeniscus were performed 12 and 24 weeks after implantation. The polymer scaffold implants adapted well to surrounding tissues, without apparent rejection, infection, or chronic inflammatory response. Fibrocartilaginous tissue with mature collagen fibers was observed predominantly in implants with seeded scaffolds compared to cell-free implants after 24 weeks. Similar results were not observed in the control group. Articular cartilage was preserved in the polymeric implants and showed higher chondrocyte cell number than the control group. These findings show that the PLDLA/PCL-T 90/10 scaffold has potential for orthopedic applications since this material allowed the formation of fibrocartilaginous tissue, a structure of crucial importance for repairing injuries to joints, including replacement of the meniscus and the protection of articular cartilage from degeneration.
Collapse
Affiliation(s)
- Andrea Rodrigues Esposito
- Department of Materials Engineering, Faculty of Mechanical Engineering, University of Campinas (UNICAMP) , Campinas, Brazil . ; Laboratory of Biomaterials, Faculty of Medicine and Health Sciences, Pontifical Catholic University of Sao Paulo (PUC-SP) , Sorocaba, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|