1
|
Jones BR, Joy JB. Inferring Human Immunodeficiency Virus 1 Proviral Integration Dates With Bayesian Inference. Mol Biol Evol 2023; 40:msad156. [PMID: 37421655 PMCID: PMC10411489 DOI: 10.1093/molbev/msad156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 06/23/2023] [Accepted: 07/06/2023] [Indexed: 07/10/2023] Open
Abstract
Human immunodeficiency virus 1 (HIV) proviruses archived in the persistent reservoir currently pose the greatest obstacle to HIV cure due to their evasion of combined antiretroviral therapy and ability to reseed HIV infection. Understanding the dynamics of the HIV persistent reservoir is imperative for discovering a durable HIV cure. Here, we explore Bayesian methods using the software BEAST2 to estimate HIV proviral integration dates. We started with within-host longitudinal HIV sequences collected prior to therapy, along with sequences collected from the persistent reservoir during suppressive therapy. We built a BEAST2 model to estimate integration dates of proviral sequences collected during suppressive therapy, implementing a tip date random walker to adjust the sequence tip dates and a latency-specific prior to inform the dates. To validate our method, we implemented it on both simulated and empirical data sets. Consistent with previous studies, we found that proviral integration dates were spread throughout active infection. Path sampling to select an alternative prior for date estimation in place of the latency-specific prior produced unrealistic results in one empirical data set, whereas on another data set, the latency-specific prior was selected as best fitting. Our Bayesian method outperforms current date estimation techniques with a root mean squared error of 0.89 years on simulated data relative to 1.23-1.89 years with previously developed methods. Bayesian methods offer an adaptable framework for inferring proviral integration dates.
Collapse
Affiliation(s)
- Bradley R Jones
- Molecular Epidemiology and Evolutionary Genetics, B.C. Centre for Excellence in HIV/AIDS, Vancouver, Canada
- Bioinformatics Program, University of British Columbia, Vancouver, Canada
| | - Jeffrey B Joy
- Molecular Epidemiology and Evolutionary Genetics, B.C. Centre for Excellence in HIV/AIDS, Vancouver, Canada
- Bioinformatics Program, University of British Columbia, Vancouver, Canada
- Deparment of Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
2
|
Yu T, Zhang M, Zhang H, Zheng J, Shen C, Jiang N, Zou L, Wang J, Yu Y, Zhang Q, Yu S, Huang Y, Huang Y, Zhang J, Qiu C, Zhang W, Meng Z. Evidence of Residual Ongoing Viral Replication in Chronic Hepatitis B Patients Successfully Treated With Nucleos(t)ide Analogues. J Infect Dis 2023; 227:675-685. [PMID: 36546708 DOI: 10.1093/infdis/jiac493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/17/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Chronic hepatitis B is usually treated with nucleos(t)ide analogues (NAs). However, a cure is rarely achieved, even with years of treatment. Here, we investigated whether viral replication is completely halted and how long covalently closed circular DNA (cccDNA) persists in patients successfully treated with NAs. METHODS A series of longitudinal serum samples and a collection of cross-sectional liver biopsies were obtained from patients successfully treated with NAs. Viral variants in serum HBV RNA were enumerated by deep sequencing. Viral replication intermediates in hepatocytes were directly visualized by in situ hybridization. The apparent half-life of each cccDNA was estimated. RESULTS Three of 6 successfully treated patients demonstrated clear evidence of a small proportion of virus evolution, although the overwhelming proportion of variants were identical or possessed a similar degree of divergence through time. The apparent half-life of variants was estimated to be from approximately 7.42 weeks to infinite. Hepatocytes remained positive for cytoplasmic nucleocapsids-associated relaxed circular DNA in 4 of 7 liver needle biopsies. CONCLUSIONS We conclude that even after prolonged treatment, a small proportion of the cccDNA reservoir is constantly replenished by continued low-level HBV replication, whereas a large proportion of the cccDNA reservoir persists over time.
Collapse
Affiliation(s)
- Tong Yu
- Minhang Hospital and Institutes of Biomedical Sciences and Huashan Hospital, Fudan University, Shanghai, China
| | - Miaoqu Zhang
- Minhang Hospital and Institutes of Biomedical Sciences and Huashan Hospital, Fudan University, Shanghai, China
| | - Hanyue Zhang
- Minhang Hospital and Institutes of Biomedical Sciences and Huashan Hospital, Fudan University, Shanghai, China
| | - Jianming Zheng
- Minhang Hospital and Institutes of Biomedical Sciences and Huashan Hospital, Fudan University, Shanghai, China
| | - Chuan Shen
- Department of Infectious Disease, The Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
- Clinical Research Center for Infectious Disease of Hebei Province, Shijiazhuang, China
| | - Ning Jiang
- Minhang Hospital and Institutes of Biomedical Sciences and Huashan Hospital, Fudan University, Shanghai, China
| | - Lei Zou
- Department of Infectious Disease, Yancheng Second People's Hospital, Yancheng, China
| | - Jing Wang
- Department of Infectious Disease, Jingan District Central Hospital of Shanghai, Shanghai, China
| | - Yiqi Yu
- Minhang Hospital and Institutes of Biomedical Sciences and Huashan Hospital, Fudan University, Shanghai, China
| | - Qiran Zhang
- Minhang Hospital and Institutes of Biomedical Sciences and Huashan Hospital, Fudan University, Shanghai, China
| | - Shuili Yu
- Minhang Hospital and Institutes of Biomedical Sciences and Huashan Hospital, Fudan University, Shanghai, China
| | - Yanfang Huang
- Minhang Hospital and Institutes of Biomedical Sciences and Huashan Hospital, Fudan University, Shanghai, China
| | - Yuxian Huang
- Minhang Hospital and Institutes of Biomedical Sciences and Huashan Hospital, Fudan University, Shanghai, China
| | - Jiming Zhang
- Minhang Hospital and Institutes of Biomedical Sciences and Huashan Hospital, Fudan University, Shanghai, China
| | - Chao Qiu
- Minhang Hospital and Institutes of Biomedical Sciences and Huashan Hospital, Fudan University, Shanghai, China
| | - Wenhong Zhang
- Minhang Hospital and Institutes of Biomedical Sciences and Huashan Hospital, Fudan University, Shanghai, China
| | - Zhefeng Meng
- Minhang Hospital and Institutes of Biomedical Sciences and Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Evolution of Multiple Domains of the HIV-1 Envelope Glycoprotein during Coreceptor Switch with CCR5 Antagonist Therapy. Microbiol Spectr 2022; 10:e0072522. [PMID: 35727047 PMCID: PMC9431240 DOI: 10.1128/spectrum.00725-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HIV-1 uses CD4 as a receptor and chemokine receptors CCR5 and/or CXCR4 as coreceptors. CCR5 antagonists are a class of antiretrovirals used to inhibit viral entry. Phenotypic prediction algorithms such as Geno2Pheno are used to assess CCR5 antagonist eligibility, for which the V3 region is screened. However, there exist scenarios where the algorithm cannot give an accurate prediction of tropism. The current study examined coreceptor shift of HIV-1 from CCR5-tropic strains to CXCR4-tropic or dual-tropic strains among five subjects in a clinical trial of the CCR5 antagonist vicriviroc. Envelope gene amplicon libraries were constructed and subjected to next-generation sequencing, as well as single-clone sequencing and functional analyses. Approximately half of the amplified full-length single envelope-encoding clones had no significant activity for infection of cells expressing high levels of CD4 and CCR5 or CXCR4. Functional analysis of 9 to 21 individual infectious clones at baseline and at the time of VF were used to construct phylogenetic trees and sequence alignments. These studies confirmed that specific residues and the overall charge of the V3 loop were the major determinants of coreceptor use, in addition to specific residues in other domains of the envelope protein in V1/V2, V4, C3, and C4 domains that may be important for coreceptor shift. These results provide greater insight into the viral genetic determinants of coreceptor shift. IMPORTANCE This study is novel in combining single-genome sequence analysis and next-generation sequencing to characterize HIV-1 quasispecies. The work highlights the importance of mutants present at frequencies of 1% or less in development of drug resistance. This study highlights a critical role of specific amino acid substitutions outside V3 that contribute to coreceptor shift as well as important roles of the V1/V2, V4, C3, and C4 domain residues.
Collapse
|
4
|
Boyer PL, Rehm CA, Sneller MC, Mican J, Caplan MR, Dewar R, Ferris AL, Clark P, Johnson A, Maldarelli F, Hughes SH. A Combination of Amino Acid Mutations Leads to Resistance to Multiple Nucleoside Analogs in Reverse Transcriptases from HIV-1 Subtypes B and C. Antimicrob Agents Chemother 2022; 66:e0150021. [PMID: 34723625 PMCID: PMC8765311 DOI: 10.1128/aac.01500-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/28/2021] [Indexed: 11/20/2022] Open
Abstract
Resistance to anti-HIV drugs has been a problem from the beginning of antiviral drug treatments. The recent expansion of combination antiretroviral therapy worldwide has led to an increase in resistance to antiretrovirals; understanding the mechanisms of resistance is increasingly important. In this study, we analyzed reverse transcriptase (RT) variants based on sequences derived from an individual who had low-level rebound viremia while undergoing therapy with abacavir, azidothymidine (AZT) (zidovudine), and (-)-l-2',3'-dideoxy-3'-thiacytidine (3TC) (lamivudine). The RT had mutations at positions 64, 67, 70, 184, and 219 and a threonine insertion after amino acid 69 in RT. The virus remained partially susceptible to the nucleoside RT inhibitor (NRTI) regimen. We show how these mutations affect the ability of NRTIs to inhibit DNA synthesis by RT. The presence of the inserted threonine reduced the susceptibility of the RT mutant to inhibition by tenofovir.
Collapse
Affiliation(s)
- Paul L. Boyer
- Retroviral Replication Laboratory, National Cancer Institute, Frederick, Maryland, USA
| | - Catherine A. Rehm
- Clinical Research Section, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Michael C. Sneller
- Clinical and Molecular Retrovirology Section, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - JoAnn Mican
- Clinical Research Section, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Margaret R. Caplan
- Division of Infectious Disease, Department of Medicine, Harbor-UCLA Medical Center, Los Angeles, California, USA
| | - Robin Dewar
- Division of Infectious Disease, Department of Medicine, Harbor-UCLA Medical Center, Los Angeles, California, USA
| | - Andrea L. Ferris
- Retroviral Replication Laboratory, National Cancer Institute, Frederick, Maryland, USA
| | - Patrick Clark
- Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Adam Johnson
- Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Frank Maldarelli
- Clinical Retrovirology Section, National Cancer Institute, Frederick, Maryland, USA
| | - Stephen H. Hughes
- Retroviral Replication Laboratory, National Cancer Institute, Frederick, Maryland, USA
| |
Collapse
|
5
|
Comas I, Cancino-Muñoz I, Mariner-Llicer C, Goig GA, Ruiz-Hueso P, Francés-Cuesta C, García-González N, González-Candelas F. Use of next generation sequencing technologies for the diagnosis and epidemiology of infectious diseases. Enferm Infecc Microbiol Clin 2021; 38 Suppl 1:32-38. [PMID: 32111363 DOI: 10.1016/j.eimc.2020.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
For the first time, next generation sequencing technologies provide access to genomic information at a price and scale that allow their implementation in routine clinical practice and epidemiology. While there are still many obstacles to their implementation, there are also multiple examples of their major advantages compared with previous methods. Their main advantage is that a single determination allows epidemiological information on the causative microorganism to be obtained simultaneously, as well as its resistance profile, although these advantages vary according to the pathogen under study. This review discusses several examples of the clinical and epidemiological use of next generation sequencing applied to complete genomes and microbiomes and reflects on its future in clinical practice.
Collapse
Affiliation(s)
- Iñaki Comas
- Instituto de Biomedicina de Valencia, IBV-CSIC, Valencia, España; CIBER en Epidemiología y Salud Pública, Valencia, España.
| | | | | | - Galo A Goig
- Instituto de Biomedicina de Valencia, IBV-CSIC, Valencia, España
| | - Paula Ruiz-Hueso
- Unidad Mixta "Infección y Salud Pública" FISABIO-Universitat de València, Instituto de Biología Integrativa de Sistemas, I2SysBio (CSIC-UV), Valencia, España
| | - Carlos Francés-Cuesta
- Unidad Mixta "Infección y Salud Pública" FISABIO-Universitat de València, Instituto de Biología Integrativa de Sistemas, I2SysBio (CSIC-UV), Valencia, España
| | - Neris García-González
- Unidad Mixta "Infección y Salud Pública" FISABIO-Universitat de València, Instituto de Biología Integrativa de Sistemas, I2SysBio (CSIC-UV), Valencia, España
| | - Fernando González-Candelas
- CIBER en Epidemiología y Salud Pública, Valencia, España; Unidad Mixta "Infección y Salud Pública" FISABIO-Universitat de València, Instituto de Biología Integrativa de Sistemas, I2SysBio (CSIC-UV), Valencia, España
| |
Collapse
|
6
|
Zhang Y, Yin Q, Ni M, Liu T, Wang C, Song C, Liao L, Xing H, Jiang S, Shao Y, Chen C, Ma L. Dynamics of HIV-1 quasispecies diversity of participants on long-term antiretroviral therapy based on intrahost single-nucleotide variations. Int J Infect Dis 2021; 104:306-314. [PMID: 33444750 DOI: 10.1016/j.ijid.2021.01.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES Human immunodeficiency virus (HIV) quasispecies diversity presents a large barrier to the eradication of HIV. The aim of this study was to investigate intrahost HIV quasispecies diversity and evolutionary patterns underpinning the mechanisms of viral pathogenesis during antiretroviral therapy (ART). METHODS Forty-five participants with HIV-1 infection were enrolled in a follow-up cohort for >84 months in 2004, and received a lamivudine-based first-line ART regimen. Blood samples were collected every 6 months to measure viral load and CD4+ cell count. Ultra-deep sequencing and phylogenetic analysis were used to characterize the dynamics governing quasispecies diversity of HIV-1 circulating between plasma RNA and cellular DNA of participants with treatment failure (TF, n = 20) or virologic suppression (VS, n = 25). RESULTS Analysis of the distribution of intrahost single-nucleotide variations (iSNVs) and their mutated allele frequencies revealed that approximately 65% of the quasispecies co-occurred in plasma HIV RNA and cellular DNA either before or after ART. The number and frequency of iSNVs are more representative of intrahost HIV diversity, and have better generalizability than phylogenetic inference by measurement of phylogenetic associations. Furthermore, drug-resistance-associated mutations (DRAMs) accumulated to high levels, dramatically increasing the DRAM-to-total-mutation ratio for TF patients. Linear regression analysis revealed that emergent mutations accumulated faster in TF patients compared with VS patients, at a rate of 0.02 mutations/day/kb. CONCLUSIONS Based on iSNV analysis, the results demonstrate the dynamics of intrahost HIV quasispecies diversity in patients on ART, and provide a novel insight into the persistence of HIV and development of DRAMs.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, National Centre for AIDS/STD Control and Prevention, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, Chinese Centre for Disease Control and Prevention, Beijing, China; Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Qianqian Yin
- State Key Laboratory of Infectious Disease Prevention and Control, National Centre for AIDS/STD Control and Prevention, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, Chinese Centre for Disease Control and Prevention, Beijing, China; State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Centre for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming Ni
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Tingting Liu
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Chen Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Centre for AIDS/STD Control and Prevention, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, Chinese Centre for Disease Control and Prevention, Beijing, China
| | - Chuan Song
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Lingjie Liao
- State Key Laboratory of Infectious Disease Prevention and Control, National Centre for AIDS/STD Control and Prevention, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, Chinese Centre for Disease Control and Prevention, Beijing, China
| | - Hui Xing
- State Key Laboratory of Infectious Disease Prevention and Control, National Centre for AIDS/STD Control and Prevention, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, Chinese Centre for Disease Control and Prevention, Beijing, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yiming Shao
- State Key Laboratory of Infectious Disease Prevention and Control, National Centre for AIDS/STD Control and Prevention, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, Chinese Centre for Disease Control and Prevention, Beijing, China
| | - Chen Chen
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.
| | - Liying Ma
- State Key Laboratory of Infectious Disease Prevention and Control, National Centre for AIDS/STD Control and Prevention, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, Chinese Centre for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
7
|
Henrich TJ, Hsue PY, VanBrocklin H. Seeing Is Believing: Nuclear Imaging of HIV Persistence. Front Immunol 2019; 10:2077. [PMID: 31572355 PMCID: PMC6751256 DOI: 10.3389/fimmu.2019.02077] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/16/2019] [Indexed: 12/19/2022] Open
Abstract
A major obstacle to HIV eradication is the presence of infected cells that persist despite suppressive antiretroviral therapy (ART). HIV largely resides outside of the peripheral circulation, and thus, numerous anatomical and lymphoid compartments that have the capacity to harbor HIV are inaccessible to routine sampling. As a result, there is a limited understanding of the tissue burden of HIV infection or anatomical distribution of HIV transcriptional and translational activity. Novel, non-invasive, in vivo methods are urgently needed to address this fundamental gap in knowledge. In this review, we discuss past and current nuclear imaging approaches that have been applied to HIV infection with an emphasis on current strategies to implement positron emission tomography (PET)-based imaging to directly visualize and characterize whole-body HIV burden. These imaging approaches have various limitations, such as the potential for limited PET sensitivity and specificity in the setting of ART suppression or low viral burden. However, recent advances in high-sensitivity, total-body PET imaging platforms and development of new radiotracer technologies that may enhance anatomical penetration of target-specific tracer molecules are discussed. Potential strategies to image non-viral markers of HIV tissue burden or focal immune perturbation are also addressed. Overall, emerging nuclear imaging techniques and platforms may play an important role in the development of novel therapeutic and HIV reservoir eradication strategies.
Collapse
Affiliation(s)
- Timothy J Henrich
- Division of Experimental Medicine, Department of Medicine, University of San Francisco, San Francisco, CA, United States
| | - Priscilla Y Hsue
- Division of Cardiology, Department of Medicine, University of San Francisco, San Francisco, CA, United States
| | - Henry VanBrocklin
- Radiopharmaceutical Research Program, Center for Molecular and Functional Imaging, University of San Francisco, San Francisco, CA, United States
| |
Collapse
|