1
|
Jha AK, Sherkhane UB, Mthun S, Jaiswar V, Purandare N, Prabhash K, Wee L, Rangarajan V, Dekker A. External Validation of Robust Radiomic Signature to Predict 2-Year Overall Survival in Non-Small-Cell Lung Cancer. J Digit Imaging 2023; 36:2519-2531. [PMID: 37735307 PMCID: PMC10584779 DOI: 10.1007/s10278-023-00835-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/16/2023] [Accepted: 04/13/2023] [Indexed: 09/23/2023] Open
Abstract
Lung cancer is the second most fatal disease worldwide. In the last few years, radiomics is being explored to develop prediction models for various clinical endpoints in lung cancer. However, the robustness of radiomic features is under question and has been identified as one of the roadblocks in the implementation of a radiomic-based prediction model in the clinic. Many past studies have suggested identifying the robust radiomic feature to develop a prediction model. In our earlier study, we identified robust radiomic features for prediction model development. The objective of this study was to develop and validate the robust radiomic signatures for predicting 2-year overall survival in non-small cell lung cancer (NSCLC). This retrospective study included a cohort of 300 stage I-IV NSCLC patients. Institutional 200 patients' data were included for training and internal validation and 100 patients' data from The Cancer Image Archive (TCIA) open-source image repository for external validation. Radiomic features were extracted from the CT images of both cohorts. The feature selection was performed using hierarchical clustering, a Chi-squared test, and recursive feature elimination (RFE). In total, six prediction models were developed using random forest (RF-Model-O, RF-Model-B), gradient boosting (GB-Model-O, GB-Model-B), and support vector(SV-Model-O, SV-Model-B) classifiers to predict 2-year overall survival (OS) on original data as well as balanced data. Model validation was performed using 10-fold cross-validation, internal validation, and external validation. Using a multistep feature selection method, the overall top 10 features were chosen. On internal validation, the two random forest models (RF-Model-O, RF-Model-B) displayed the highest accuracy; their scores on the original and balanced datasets were 0.81 and 0.77 respectively. During external validation, both the random forest models' accuracy was 0.68. In our study, robust radiomic features showed promising predictive performance to predict 2-year overall survival in NSCLC.
Collapse
Affiliation(s)
- Ashish Kumar Jha
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands.
- Department of Nuclear Medicine, Tata Memorial Hospital, Mumbai, Maharashtra, India.
- Homi Bhabha National Institute, Mumbai, Maharashtra, India.
| | - Umeshkumar B Sherkhane
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Nuclear Medicine, Tata Memorial Hospital, Mumbai, Maharashtra, India
| | - Sneha Mthun
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Nuclear Medicine, Tata Memorial Hospital, Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Vinay Jaiswar
- Department of Nuclear Medicine, Tata Memorial Hospital, Mumbai, Maharashtra, India
| | - Nilendu Purandare
- Department of Nuclear Medicine, Tata Memorial Hospital, Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Kumar Prabhash
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
- Department of Medical Oncology, Tata Memorial Hospital, Mumbai, Maharashtra, India
| | - Leonard Wee
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Venkatesh Rangarajan
- Department of Nuclear Medicine, Tata Memorial Hospital, Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Andre Dekker
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
2
|
Habert P, Decoux A, Chermati L, Gibault L, Thomas P, Varoquaux A, Le Pimpec-Barthes F, Arnoux A, Juquel L, Chaumoitre K, Garcia S, Gaubert JY, Duron L, Fournier L. Best imaging signs identified by radiomics could outperform the model: application to differentiating lung carcinoid tumors from atypical hamartomas. Insights Imaging 2023; 14:148. [PMID: 37726504 PMCID: PMC10509085 DOI: 10.1186/s13244-023-01484-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/17/2023] [Indexed: 09/21/2023] Open
Abstract
OBJECTIVES Lung carcinoids and atypical hamartomas may be difficult to differentiate but require different treatment. The aim was to differentiate these tumors using contrast-enhanced CT semantic and radiomics criteria. METHODS Between November 2009 and June 2020, consecutives patient operated for hamartomas or carcinoids with contrast-enhanced chest-CT were retrospectively reviewed. Semantic criteria were recorded and radiomics features were extracted from 3D segmentations using Pyradiomics. Reproducible and non-redundant radiomics features were used to training a random forest algorithm with cross-validation. A validation-set from another institution was used to evaluate of the radiomics signature, the 3D 'median' attenuation feature (3D-median) alone and the mean value from 2D-ROIs. RESULTS Seventy-three patients (median 58 years [43‒70]) were analyzed (16 hamartomas; 57 carcinoids). The radiomics signature predicted hamartomas vs carcinoids on the external dataset (22 hamartomas; 32 carcinoids) with an AUC = 0.76. The 3D-median was the most important in the model. Density thresholds < 10 HU to predict hamartoma and > 60 HU to predict carcinoids were chosen for their high specificity > 0.90. On the external dataset, sensitivity and specificity of the 3D-median and 2D-ROIs were, respectively, 0.23, 1.00 and 0.13, 1.00 < 10 HU; 0.63, 0.95 and 0.69, 0.91 > 60 HU. The 3D-median was more reproducible than 2D-ROIs (ICC = 0.97 95% CI [0.95‒0.99]; bias: 3 ± 7 HU limits of agreement (LoA) [- 10‒16] vs. ICC = 0.90 95% CI [0.85‒0.94]; bias: - 0.7 ± 21 HU LoA [- 4‒40], respectively). CONCLUSIONS A radiomics signature can distinguish hamartomas from carcinoids with an AUC = 0.76. Median density < 10 HU and > 60 HU on 3D or 2D-ROIs may be useful in clinical practice to diagnose these tumors with confidence, but 3D is more reproducible. CRITICAL RELEVANCE STATEMENT Radiomic features help to identify the most discriminating imaging signs using random forest. 'Median' attenuation value (Hounsfield units), extracted from 3D-segmentations on contrast-enhanced chest-CTs, could distinguish carcinoids from atypical hamartomas (AUC = 0.85), was reproducible (ICC = 0.97), and generalized to an external dataset. KEY POINTS • 3D-'Median' was the best feature to differentiate carcinoids from atypical hamartomas (AUC = 0.85). • 3D-'Median' feature is reproducible (ICC = 0.97) and was generalized to an external dataset. • Radiomics signature from 3D-segmentations differentiated carcinoids from atypical hamartomas with an AUC = 0.76. • 2D-ROI value reached similar performance to 3D-'median' but was less reproducible (ICC = 0.90).
Collapse
Affiliation(s)
- Paul Habert
- Imaging Department, Hopital Nord, APHM, Aix Marseille University, Marseille, France.
- LIIE, Aix Marseille Univ, Marseille, France.
- PARCC UMRS 970, INSERM, Université Paris Cité, Paris, France.
| | - Antoine Decoux
- PARCC UMRS 970, INSERM, Université Paris Cité, Paris, France
| | - Lilia Chermati
- Imaging Department, Hopital Nord, APHM, Aix Marseille University, Marseille, France
| | - Laure Gibault
- Department of Pathology, Hôpital Européen Georges Pompidou, Assistance, Publique Hôpitaux de Paris, Paris, France
| | - Pascal Thomas
- Service de Chirurgie Thoracique et Transplantation Pulmonaire, Hôpital Nord, Chemin des Bourrely, Aix Marseille Université, 13015, Marseille, France
| | - Arthur Varoquaux
- Department of Radiology, La Conception Hospital, Assistance Publique-Hôpitaux de Marseille, Aix-Marseille University, 13005, Marseille, France
| | | | - Armelle Arnoux
- AP-HP, Hopital Européen Georges Pompidou, Unité de Recherche Clinique, Centre d'Investigation Clinique 1418 Épidémiologie Clinique, INSERM, Université Paris Cité, Paris, France
| | - Loïc Juquel
- Service d'anatomie et Cytologie Pathologiques, Hôpital Nord, Chemin Des Bourrely, 13015, Marseille, France
- U1068-CRCM, Aix Marseille Université, 13015, Marseille, France
| | - Kathia Chaumoitre
- Imaging Department, Hopital Nord, APHM, Aix Marseille University, Marseille, France
| | - Stéphane Garcia
- Service d'anatomie et Cytologie Pathologiques, Hôpital Nord, Chemin Des Bourrely, 13015, Marseille, France
- U1068-CRCM, Aix Marseille Université, 13015, Marseille, France
| | - Jean-Yves Gaubert
- LIIE, Aix Marseille Univ, Marseille, France
- Department of Radiology, AP-HM, Hôpital La Timone, 13005, Marseille, France
| | - Loïc Duron
- PARCC UMRS 970, INSERM, Université Paris Cité, Paris, France
- Department of Neuroradiology, Alphonse de Rothschild Foundation Hospital, 75019, Paris, France
| | - Laure Fournier
- AP-HP, Hopital Européen Georges Pompidou, PARCC UMRS 970, INSERM, Université Paris Cité, Paris, France
| |
Collapse
|
3
|
Gabelloni M, Faggioni L, Fusco R, Simonetti I, De Muzio F, Giacobbe G, Borgheresi A, Bruno F, Cozzi D, Grassi F, Scaglione M, Giovagnoni A, Barile A, Miele V, Gandolfo N, Granata V. Radiomics in Lung Metastases: A Systematic Review. J Pers Med 2023; 13:jpm13020225. [PMID: 36836460 PMCID: PMC9967749 DOI: 10.3390/jpm13020225] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/22/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
Due to the rich vascularization and lymphatic drainage of the pulmonary tissue, lung metastases (LM) are not uncommon in patients with cancer. Radiomics is an active research field aimed at the extraction of quantitative data from diagnostic images, which can serve as useful imaging biomarkers for a more effective, personalized patient care. Our purpose is to illustrate the current applications, strengths and weaknesses of radiomics for lesion characterization, treatment planning and prognostic assessment in patients with LM, based on a systematic review of the literature.
Collapse
Affiliation(s)
- Michela Gabelloni
- Nuclear Medicine Unit, Department of Translational Research, University of Pisa, 56126 Pisa, Italy
| | - Lorenzo Faggioni
- Academic Radiology, Department of Translational Research, University of Pisa, 56126 Pisa, Italy
- Correspondence: ; Tel.: +39-050-992524
| | - Roberta Fusco
- Medical Oncology Division, Igea SpA, 80013 Naples, Italy
| | - Igino Simonetti
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Federica De Muzio
- Department of Medicine and Health Sciences V. Tiberio, University of Molise, 86100 Campobasso, Italy
| | - Giuliana Giacobbe
- General and Emergency Radiology Department, “Antonio Cardarelli” Hospital, 80131 Naples, Italy
| | - Alessandra Borgheresi
- Department of Radiology, University Hospital “Azienda Ospedaliera Universitaria delle Marche”, 60126 Ancona, Italy
- Department of Clinical, Special and Dental Sciences, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Federico Bruno
- Department of Diagnostic Imaging, Area of Cardiovascular and Interventional Imaging, Abruzzo Health Unit 1, 67100 L’Aquila, Italy
- Italian Society of Medical and Interventional Radiology, SIRM Foundation, 20122 Milan, Italy
| | - Diletta Cozzi
- Italian Society of Medical and Interventional Radiology, SIRM Foundation, 20122 Milan, Italy
- Department of Emergency Radiology, Careggi University Hospital, 50134 Florence, Italy
| | - Francesca Grassi
- Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Mariano Scaglione
- Department of Surgery, Medicine and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - Andrea Giovagnoni
- Department of Radiology, University Hospital “Azienda Ospedaliera Universitaria delle Marche”, 60126 Ancona, Italy
- Department of Clinical, Special and Dental Sciences, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Antonio Barile
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Vittorio Miele
- Italian Society of Medical and Interventional Radiology, SIRM Foundation, 20122 Milan, Italy
- Department of Emergency Radiology, Careggi University Hospital, 50134 Florence, Italy
| | - Nicoletta Gandolfo
- Diagnostic Imaging Department, Villa Scassi Hospital-ASL 3, 16149 Genoa, Italy
| | - Vincenza Granata
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| |
Collapse
|
4
|
Wu YJ, Wu FZ, Yang SC, Tang EK, Liang CH. Radiomics in Early Lung Cancer Diagnosis: From Diagnosis to Clinical Decision Support and Education. Diagnostics (Basel) 2022; 12:diagnostics12051064. [PMID: 35626220 PMCID: PMC9139351 DOI: 10.3390/diagnostics12051064] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/14/2022] [Accepted: 04/22/2022] [Indexed: 12/19/2022] Open
Abstract
Lung cancer is the most frequent cause of cancer-related death around the world. With the recent introduction of low-dose lung computed tomography for lung cancer screening, there has been an increasing number of smoking- and non-smoking-related lung cancer cases worldwide that are manifesting with subsolid nodules, especially in Asian populations. However, the pros and cons of lung cancer screening also follow the implementation of lung cancer screening programs. Here, we review the literature related to radiomics for early lung cancer diagnosis. There are four main radiomics applications: the classification of lung nodules as being malignant/benign; determining the degree of invasiveness of the lung adenocarcinoma; histopathologic subtyping; and prognostication in lung cancer prediction models. In conclusion, radiomics offers great potential to improve diagnosis and personalized risk stratification in early lung cancer diagnosis through patient–doctor cooperation and shared decision making.
Collapse
Affiliation(s)
- Yun-Ju Wu
- Department of Software Engineering and Management, National Kaohsiung Normal University, Kaohsiung 80201, Taiwan;
| | - Fu-Zong Wu
- Institute of Education, National Sun Yat-Sen University, 70, Lien-Hai Road, Kaohsiung 804241, Taiwan;
- Department of Radiology, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan
- Faculty of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Correspondence:
| | - Shu-Ching Yang
- Institute of Education, National Sun Yat-Sen University, 70, Lien-Hai Road, Kaohsiung 804241, Taiwan;
| | - En-Kuei Tang
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan;
| | - Chia-Hao Liang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan;
| |
Collapse
|
5
|
Thomas PA. Development of radiomics models to predict lymph node metastasis and de-escalated non-small-cell lung cancer surgery: a word of caution. Eur J Cardiothorac Surg 2021; 60:72-73. [PMID: 33523235 DOI: 10.1093/ejcts/ezab021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Pascal Alexandre Thomas
- Department of Thoracic Surgery, North Hospital, Aix-Marseille University & Assistance Publique-Hôpitaux de Marseille, Marseille, France.,Predictive Oncology Laboratory, CRCM, Inserm UMR 1068, CNRS, UMR 7258, Aix-Marseille University UM105, Marseille, France
| |
Collapse
|
6
|
Rodríguez M, Ajona D, Seijo LM, Sanz J, Valencia K, Corral J, Mesa-Guzmán M, Pío R, Calvo A, Lozano MD, Zulueta JJ, Montuenga LM. Molecular biomarkers in early stage lung cancer. Transl Lung Cancer Res 2021; 10:1165-1185. [PMID: 33718054 PMCID: PMC7947407 DOI: 10.21037/tlcr-20-750] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Low dose computed tomography (LDCT) screening, together with the recent advances in targeted and immunotherapies, have shown to improve non-small cell lung cancer (NSCLC) survival. Furthermore, screening has increased the number of early stage-detected tumors, allowing for surgical resection and multimodality treatments when needed. The need for improved sensitivity and specificity of NSCLC screening has led to increased interest in combining clinical and radiological data with molecular data. The development of biomarkers is poised to refine inclusion criteria for LDCT screening programs. Biomarkers may also be useful to better characterize the risk of indeterminate nodules found in the course of screening or to refine prognosis and help in the management of screening detected tumors. The clinical implications of these biomarkers are still being investigated and whether or not biomarkers will be included in further decision-making algorithms in the context of screening and early lung cancer management still needs to be determined. However, it seems clear that there is much room for improvement even in early stage lung cancer disease-free survival (DFS) rates; thus, biomarkers may be the key to refine risk-stratification and treatment of these patients. Clinicians’ capacity to register, integrate, and analyze all the available data in both high risk individuals and early stage NSCLC patients will lead to a better understanding of the disease’s mechanisms, and will have a direct impact in diagnosis, treatment, and follow up of these patients. In this review, we aim to summarize all the available data regarding the role of biomarkers in LDCT screening and early stage NSCLC from a multidisciplinary perspective. We have highlighted clinical implications, the need to combine risk stratification, clinical data, radiomics, molecular information and artificial intelligence in order to improve clinical decision-making, especially regarding early diagnostics and adjuvant therapy. We also discuss current and future perspectives for biomarker implementation in routine clinical practice.
Collapse
Affiliation(s)
- María Rodríguez
- Department of Thoracic Surgery, Clínica Universidad de Navarra, Madrid, Spain
| | - Daniel Ajona
- Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IdISNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Luis M Seijo
- Department of Pulmonology, Clínica Universidad de Navarra, Madrid, Spain.,Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Julián Sanz
- Department of Pathology, Clínica Universidad de Navarra, Madrid, Spain
| | - Karmele Valencia
- Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Jesús Corral
- Department of Oncology, Clínica Universidad de Navarra, Madrid, Spain
| | - Miguel Mesa-Guzmán
- Department of Thoracic Surgery, Clínica Universidad de Navarra, Pamplona, Spain
| | - Rubén Pío
- Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IdISNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Alfonso Calvo
- Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IdISNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Department of Pathology, Anatomy and Physiology, Schools of Medicine and Sciences, University of Navarra, Pamplona, Spain
| | - María D Lozano
- Navarra Institute for Health Research (IdISNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Department of Pathology, Anatomy and Physiology, Schools of Medicine and Sciences, University of Navarra, Pamplona, Spain.,Department of Pathology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Javier J Zulueta
- Navarra Institute for Health Research (IdISNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Department of Pulmonology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Luis M Montuenga
- Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IdISNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Department of Pathology, Anatomy and Physiology, Schools of Medicine and Sciences, University of Navarra, Pamplona, Spain
| |
Collapse
|