1
|
Wallen ZD, Nesline MK, Pabla S, Gao S, Vanroey E, Hastings SB, Ko H, Strickland KC, Previs RA, Zhang S, Conroy JM, Jensen TJ, George E, Eisenberg M, Caveney B, Sathyan P, Ramkissoon S, Severson EA. A consensus-based classification workflow to determine genetically inferred ancestry from comprehensive genomic profiling of patients with solid tumors. Brief Bioinform 2024; 25:bbae557. [PMID: 39471413 PMCID: PMC11521331 DOI: 10.1093/bib/bbae557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 09/18/2024] [Accepted: 10/16/2024] [Indexed: 11/01/2024] Open
Abstract
Disparities in cancer diagnosis, treatment, and outcomes based on self-identified race and ethnicity (SIRE) are well documented, yet these variables have historically been excluded from clinical research. Without SIRE, genetic ancestry can be inferred using single-nucleotide polymorphisms (SNPs) detected from tumor DNA using comprehensive genomic profiling (CGP). However, factors inherent to CGP of tumor DNA increase the difficulty of identifying ancestry-informative SNPs, and current workflows for inferring genetic ancestry from CGP need improvements in key areas of the ancestry inference process. This study used genomic data from 4274 diverse reference subjects and CGP data from 491 patients with solid tumors and SIRE to develop and validate a workflow to obtain accurate genetically inferred ancestry (GIA) from CGP sequencing results. We use consensus-based classification to derive confident ancestral inferences from an expanded reference dataset covering eight world populations (African, Admixed American, Central Asian/Siberian, European, East Asian, Middle Eastern, Oceania, South Asian). Our GIA calls were highly concordant with SIRE (95%) and aligned well with reference populations of inferred ancestries. Further, our workflow could expand on SIRE by (i) detecting the ancestry of patients that usually lack appropriate racial categories, (ii) determining what patients have mixed ancestry, and (iii) resolving ancestries of patients in heterogeneous racial categories and who had missing SIRE. Accurate GIA provides needed information to enable ancestry-aware biomarker research, ensure the inclusion of underrepresented groups in clinical research, and increase the diverse representation of patient populations eligible for precision medicine therapies and trials.
Collapse
Affiliation(s)
- Zachary D Wallen
- Medical Oncology, Labcorp Oncology, 6 Moore Dr., Durham, NC 27560, United States
| | - Mary K Nesline
- Medical Oncology, Labcorp Oncology, 6 Moore Dr., Durham, NC 27560, United States
| | - Sarabjot Pabla
- Medical Oncology, Labcorp Oncology, 6 Moore Dr., Durham, NC 27560, United States
| | - Shuang Gao
- Medical Oncology, Labcorp Oncology, 6 Moore Dr., Durham, NC 27560, United States
| | - Erik Vanroey
- Medical Oncology, Labcorp Oncology, 6 Moore Dr., Durham, NC 27560, United States
| | - Stephanie B Hastings
- Medical Oncology, Labcorp Oncology, 6 Moore Dr., Durham, NC 27560, United States
| | - Heidi Ko
- Medical Oncology, Labcorp Oncology, 6 Moore Dr., Durham, NC 27560, United States
| | - Kyle C Strickland
- Medical Oncology, Labcorp Oncology, 6 Moore Dr., Durham, NC 27560, United States
- Department of Pathology, Duke University Medical Center, Duke Cancer Institute, 40 Duke Medicine Cir, Durham, NC 27710, United States
| | - Rebecca A Previs
- Medical Oncology, Labcorp Oncology, 6 Moore Dr., Durham, NC 27560, United States
- Department of Obstetrics & Gynecology, Duke University Medical Center, Duke Cancer Institute, 40 Duke Medicine Cir, Durham, NC 27710, United States
| | - Shengle Zhang
- Medical Oncology, Labcorp Oncology, 6 Moore Dr., Durham, NC 27560, United States
| | - Jeffrey M Conroy
- Medical Oncology, Labcorp Oncology, 6 Moore Dr., Durham, NC 27560, United States
| | - Taylor J Jensen
- Medical Oncology, Labcorp Oncology, 6 Moore Dr., Durham, NC 27560, United States
| | - Elizabeth George
- Labcorp, 531 South Spring Street, Burlington, NC 27215, United States
| | - Marcia Eisenberg
- Labcorp, 531 South Spring Street, Burlington, NC 27215, United States
| | - Brian Caveney
- Labcorp, 531 South Spring Street, Burlington, NC 27215, United States
| | - Pratheesh Sathyan
- Oncology Medical Affairs, Illumina Inc, 5200 Illumina Way, San Diego, CA 92122, United States
| | - Shakti Ramkissoon
- Medical Oncology, Labcorp Oncology, 6 Moore Dr., Durham, NC 27560, United States
- Department of Pathology, Wake Forest Comprehensive Cancer Center, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27109, United States
| | - Eric A Severson
- Medical Oncology, Labcorp Oncology, 6 Moore Dr., Durham, NC 27560, United States
| |
Collapse
|
2
|
Álvarez-Topete E, Torres-Sánchez LE, Hernández-Tobías EA, Véliz D, Hernández-Pérez JG, de Lourdes López-González M, Meraz-Ríos MA, Gómez R. Circum-Mediterranean influence in the Y-chromosome lineages associated with prostate cancer in Mexican men: A Converso heritage founder effect? PLoS One 2024; 19:e0308092. [PMID: 39150969 PMCID: PMC11329122 DOI: 10.1371/journal.pone.0308092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/17/2024] [Indexed: 08/18/2024] Open
Abstract
Prostate cancer is the second most common neoplasia amongst men worldwide. Hereditary susceptibility and ancestral heritage are well-established risk factors that explain the disparity trends across different ethnicities, populations, and regions even within the same country. The Y-chromosome has been considered a prototype biomarker for male health. African, European, Middle Eastern, and Hispanic ancestries exhibit the highest incidences of such neoplasia; Asians have the lowest rates. Nonetheless, the contribution of ancestry patterns has been scarcely explored among Latino males. The Mexican population has an extremely diverse genetic architecture where all the aforementioned ancestral backgrounds converge. Trans-ethnic research could illuminate the aetiology of prostate cancer, involving the migratory patterns, founder effects, and the ethnic contributions to its disparate incidence rates. The contribution of the ancestral heritage to prostate cancer risk were explored through a case-control study (152 cases and 372 controls) study in Mexican Mestizo males. Seventeen microsatellites were used to trace back the ancestral heritage using two Bayesian predictor methods. The lineage R1a seems to contribute to prostate cancer (ORadjusted:8.04, 95%CI:1.41-45.80) development, whereas E1b1a/E1b1b and GHIJ contributed to well-differentiated (Gleason ≤ 7), and late-onset prostate cancer. Meta-analyses reinforced our findings. The mentioned lineages exhibited a connection with the Middle Eastern and North African populations that enriched the patrilineal diversity to the southeast region of the Iberian Peninsula. This ancestral legacy arrived at the New World with the Spanish and Sephardim migrations. Our findings reinforced the contribution of family history and ethnic background to prostate cancer risk, although should be confirmed using a large sample size. Nonetheless, given its complex aetiology, in addition to the genetic component, the lifestyle and xenobiotic exposition could also influence the obtained results.
Collapse
Affiliation(s)
| | - Luisa E Torres-Sánchez
- Centro de Investigación en Salud Poblacional, Instituto Nacional de Salud Pública (INSP), Cuernavaca, Morelos, México
| | - Esther A Hernández-Tobías
- Universidad Autónoma de Nuevo León, Facultad de Salud Pública y Nutrición, Monterrey, Nuevo León, Mexico
| | - David Véliz
- Departamento de Ciencias Ecológicas, Instituto de Ecología y Biodiversidad (IEB), Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Jesús G Hernández-Pérez
- Centro de Investigación en Salud Poblacional, Instituto Nacional de Salud Pública (INSP), Cuernavaca, Morelos, México
- Escuela de Salud Pública de México, INSP, Cuernavaca, Morelos, México
| | | | | | - Rocío Gómez
- Departamento de Toxicología, CINVESTAV-IPN, Mexico City, Mexico
| |
Collapse
|
3
|
Bataba E, Babcock K, Isensee KA, Eldhose B, Kohaar I, Chesnut GT, Dobi A. Germline Mutations and Ancestry in Prostate Cancer. Curr Oncol Rep 2024; 26:175-180. [PMID: 38265515 PMCID: PMC10891190 DOI: 10.1007/s11912-024-01493-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2024] [Indexed: 01/25/2024]
Abstract
PURPOSE OF REVIEW Prostate cancer is the most frequently diagnosed non-cutaneous malignancy of men in the USA; notably, the incidence is higher among men of African, followed by European and Asian ancestry. Germline mutations and, in particular, mutations in DNA damage repair genes (DDRGs) have been implicated in the pathogenesis of prostate cancer. This review intends to discuss the implication of ancestry on prostate cancer, specifically in regard to lack of diversity in genomic and genetic databases and the ability of providers to properly counsel patients on the significance of cancer genetic results. RECENT FINDINGS Ancestral differences in prostate cancer-associated DDRG germline mutations are increasingly recognized. Guidelines for treatment by the National Comprehensive Cancer Network® (NCCN®) support germline testing in certain patients, and a myriad of genetic testing panels for DDRG mutations are now available in clinical practice. However, the consensus among providers on what genes and mutations to include in the genetic tests has evolved from experience from men of European ancestry (EA). Gaps in ancestry-informed clinical practice exist in genetic risk assessment, implementation of screening, counseling, guiding recommendations, treatment, and clinical trial enrollment. The lack of diversity in tumor genomic and genetic databases may hinder ancestry-specific disease-predisposing alterations from being discovered and targeted in prostate cancer and, therefore, impede the ability of providers to accurately counsel patients on the significance of cancer genetic test results.
Collapse
Affiliation(s)
- Eudoxie Bataba
- Walter Reed National Military Medical Center, Bethesda, MD, 20889, USA
| | - Kevin Babcock
- Walter Reed National Military Medical Center, Bethesda, MD, 20889, USA
| | - Kathryn A Isensee
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Binil Eldhose
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery at the Uniformed Services University of the Health Sciences, 6720A Rockledge Drive Suite 300, Bethesda, MD, 20817, USA
- Henry Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, 20817, USA
| | - Indu Kohaar
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery at the Uniformed Services University of the Health Sciences, 6720A Rockledge Drive Suite 300, Bethesda, MD, 20817, USA
- Henry Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, 20817, USA
- Cancer Biomarkers Research Group, Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Rockville, MD, 20850, USA
| | - Gregory T Chesnut
- Walter Reed National Military Medical Center, Bethesda, MD, 20889, USA
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery at the Uniformed Services University of the Health Sciences, 6720A Rockledge Drive Suite 300, Bethesda, MD, 20817, USA
| | - Albert Dobi
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery at the Uniformed Services University of the Health Sciences, 6720A Rockledge Drive Suite 300, Bethesda, MD, 20817, USA.
- Henry Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, 20817, USA.
| |
Collapse
|