1
|
Dladla M, Gyzenhout M, Marias G, Ghosh S. Azole resistance in Aspergillus fumigatus- comprehensive review. Arch Microbiol 2024; 206:305. [PMID: 38878211 DOI: 10.1007/s00203-024-04026-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/23/2024]
Abstract
Aspergillus fumigatus is a ubiquitous filamentous fungus commonly found in the environment. It is also an opportunistic human pathogen known to cause a range of respiratory infections, such as invasive aspergillosis, particularly in immunocompromised individuals. Azole antifungal agents are widely used for the treatment and prophylaxis of Aspergillus infections due to their efficacy and tolerability. However, the emergence of azole resistance in A. fumigatus has become a major concern in recent years due to their association with increased treatment failures and mortality rates. The development of azole resistance in A. fumigatus can occur through both acquired and intrinsic mechanisms. Acquired resistance typically arises from mutations in the target enzyme, lanosterol 14-α-demethylase (Cyp51A), reduces the affinity of azole antifungal agents for the enzyme, rendering them less effective, while intrinsic resistance refers to a natural resistance of certain A. fumigatus isolates to azole antifungals due to inherent genetic characteristics. The current review aims to provide a comprehensive overview of azole antifungal resistance in A. fumigatus, discusses underlying resistance mechanisms, including alterations in the target enzyme, Cyp51A, and the involvement of efflux pumps in drug efflux. Impact of azole fungicide uses in the environment and the spread of resistant strains is also explored.
Collapse
Affiliation(s)
- Mthokozisi Dladla
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa
| | - Marieka Gyzenhout
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa.
| | - Gert Marias
- Department of Plant Sciences, Division of Plant Pathology, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa
| | - Soumya Ghosh
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa.
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Birkat Al Mawz, Oman.
| |
Collapse
|
2
|
Dangarembizi R, Wasserman S, Hoving JC. Emerging and re-emerging fungal threats in Africa. Parasite Immunol 2023; 45:e12953. [PMID: 36175380 PMCID: PMC9892204 DOI: 10.1111/pim.12953] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 02/04/2023]
Abstract
The emergence of deadly fungal infections in Africa is primarily driven by a disproportionately high burden of human immunodeficiency virus (HIV) infections, lack of access to quality health care, and the unavailability of effective antifungal drugs. Immunocompromised people in Africa are therefore at high risk of infection from opportunistic fungal pathogens such as Cryptococcus neoformans and Pneumocystis jirovecii, which are associated with high morbidity, mortality, and related socioeconomic impacts. Other emerging fungal threats include Emergomyces spp., Histoplasma spp., Blastomyces spp., and healthcare-associated multi-drug resistant Candida auris. Socioeconomic development and the Covid-19 pandemic may influence shifts in epidemiology of invasive fungal diseases on the continent. This review discusses the epidemiology, clinical manifestations, and current management strategies available for these emerging fungal diseases in Africa. We also discuss gaps in knowledge, policy, and research to inform future efforts at managing these fungal threats.
Collapse
Affiliation(s)
- Rachael Dangarembizi
- Division of Physiological Sciences, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa,Neuroscience Institute, Faculty of Health Sciences, University of Cape Town, Groote Schuur Hospital, Cape Town, South Africa,CMM AFRICA Medical Mycology Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa,Contact information of corresponding author Dr Rachael Dangarembizi, Division of Physiological Sciences, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa, Neuroscience Institute, Faculty of Health Sciences, University of Cape Town, Groote Schuur Hospital, Cape Town, South Africa, CMM AFRICA Medical Mycology Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa,
| | - Sean Wasserman
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa,Division of Infectious Diseases and HIV Medicine, Department of Medicine, University of Cape Town, Groote Schuur Hospital, Cape Town, South Africa
| | - Jennifer Claire Hoving
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa,Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa,CMM AFRICA Medical Mycology Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
3
|
Ibe C, Otu AA. Recent advances and challenges in the early diagnosis and management of invasive fungal infections in Africa. FEMS Yeast Res 2022; 22:6763419. [PMID: 36259762 DOI: 10.1093/femsyr/foac048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/13/2022] [Accepted: 10/03/2022] [Indexed: 01/07/2023] Open
Abstract
Invasive fungal infections are a serious concern globally, especially in African settings which are typified by poorly funded and fragile healthcare systems. Low performance diagnostics, limited therapeutics and poor societal awareness of invasive fungal infections are some of the perennial challenges which have contributed to the unacceptably high death rates from these serious infections. However, recent advances have been recorded in fungal diagnostics and therapeutics development. Research into the development of vaccines to prevent fungal disease is beginning to yield promising results. Here we highlight key successes recorded and gaps in this journey and argue that national governments and relevant stakeholders need to do more to prioritise invasive fungal infections. Pragmatic and context-specific measures are proposed to mitigate the peculiar challenges Africa faces in tackling invasive fungal infections.
Collapse
Affiliation(s)
- Chibuike Ibe
- Department of Microbiology, Abia State University, PMB 2000, Uturu, Abia State, Nigeria
| | - Akaninyene Asuquo Otu
- Department of Microbiology, Leeds Teaching Hospital NHS Trust, LS1 3EX Leeds, United Kingdom
| |
Collapse
|
4
|
James JE, Santhanam J, Cannon RD, Lamping E. Voriconazole Treatment Induces a Conserved Sterol/Pleiotropic Drug Resistance Regulatory Network, including an Alternative Ergosterol Biosynthesis Pathway, in the Clinically Important FSSC Species, Fusarium keratoplasticum. J Fungi (Basel) 2022; 8:jof8101070. [PMID: 36294635 PMCID: PMC9605146 DOI: 10.3390/jof8101070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
Fusarium keratoplasticum is the Fusarium species most commonly associated with human infections (fusariosis). Antifungal treatment of fusariosis is often hampered by limited treatment options due to resistance towards azole antifungals. The mechanisms of antifungal resistance and sterol biosynthesis in fusaria are poorly understood. Therefore, in this study we assessed the transcriptional response of F. keratoplasticum when exposed to voriconazole. Our results revealed a group of dramatically upregulated ergosterol biosynthesis gene duplicates, most notably erg6A (912-fold), cyp51A (52-fold) and ebp1 (20-fold), which are likely part of an alternative ergosterol biosynthesis salvage pathway. The presence of human cholesterol biosynthesis gene homologs in F. keratoplasticum (ebp1, dhcr7 and dhcr24_1, dhcr24_2 and dhcr24_3) suggests that additional sterol biosynthesis pathways may be induced in fusaria under other growth conditions or during host invasion. Voriconazole also induced the expression of a number of ABC efflux pumps. Further investigations suggested that the highly conserved master regulator of ergosterol biosynthesis, FkSR, and the pleiotropic drug resistance network that induces zinc-cluster transcription factor FkAtrR coordinate the response of FSSC species to azole antifungal exposure. In-depth genome mining also helped clarify the ergosterol biosynthesis pathways of moulds and provided a better understanding of antifungal drug resistance mechanisms in fusaria.
Collapse
Affiliation(s)
- Jasper E. James
- Biomedical Science Programme, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
| | - Jacinta Santhanam
- Biomedical Science Programme, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
- Correspondence: (J.S.); (R.D.C.); (E.L.); Tel.: +60-3-9289-7039 (J.S.); +64-3-479-7081 (R.D.C.); +64-3-479-5290 (E.L.)
| | - Richard D. Cannon
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
- Correspondence: (J.S.); (R.D.C.); (E.L.); Tel.: +60-3-9289-7039 (J.S.); +64-3-479-7081 (R.D.C.); +64-3-479-5290 (E.L.)
| | - Erwin Lamping
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
- Correspondence: (J.S.); (R.D.C.); (E.L.); Tel.: +60-3-9289-7039 (J.S.); +64-3-479-7081 (R.D.C.); +64-3-479-5290 (E.L.)
| |
Collapse
|
5
|
Amona MF, Oladele RO, Resendiz-Sharpe A, Denning DW, Kosmidis C, Lagrou K, Zhong H, Han L. Triazole resistance in Aspergillus fumigatus isolates in Africa: a systematic review. Med Mycol 2022; 60:6652216. [PMID: 35906879 DOI: 10.1093/mmy/myac059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/18/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Emergence of triazole resistance has been observed in Aspergillus fumigatus over the past decade including in Africa. This review summarizes the current published data on the epidemiology and reported mechanisms of triazole-resistant Aspergillus fumigatus (TRAF) in both environmental and clinical isolates from Africa. Searches on databases Medline, PubMed, HINARI, Science Direct, Scopus and Google Scholar on triazole resistance published between 2000 and 2021 from Africa were performed. Isolate source, antifungal susceptibility using internationally recognized methods, cyp51A mechanism of resistance and genotype were collected. Eleven published African studies were found that fitted the search criteria; these were subsequently analyzed. In total this constituted of 1686 environmental and 46 clinical samples. A TRAF prevalence of 17.1% (66/387) and 1,3% (5/387) was found in respectively environmental and clinical settings in African studies. Resistant to itraconazole, voriconazole, and posaconazole was documented. Most of the triazole-resistant isolates (30/71, 42.25%) were found to possess the TR34/L98H mutation in the cyp51A-gene; fewer with TR46/Y121F/T289A (n = 8), F46Y/M172V/E427K (n = 1), G54E (n = 13), and M172V (n = 1) mutations. African isolates with the TR34/L98H, TR46/Y121F/T289A and the G54E mutations were closely related and could be grouped in one of two clusters (cluster-B), whereas the cyp51A-M172V mutation clustered with most cyp51A- WT strains (cluster-A). A single case from Kenya shows that TR34/L98H from environmental and clinical isolates are closely related. Our findings highlight that triazole resistance in environmental and clinical A. fumigatus is a cause for concern in a number of African countries. There is need for epidemiological surveillance to determine the true burden of the problem in Africa.
Collapse
Affiliation(s)
- Modeste Fructueux Amona
- Faculty of Health Sciences, Marien Ngouabi University, Brazzaville, Republic of Congo.,Research Center and Study of Infectious and Tropical Pathologies, Oyo, Republic of Congo
| | - Rita Okeoghene Oladele
- Department of Medical Microbiology and Parasitology, College of Medicine, University of Lagos, Lagos, Nigeria.,Department of Medical Microbiology and Parasitology, Lagos University Teaching Hospital, Idi-Araba, Lagos, Nigeria
| | - Agustin Resendiz-Sharpe
- Department of Microbiology, Laboratory of Clinical Bacteriology and Mycology, Immunology and Transplantation, KU Leuven, Leuven, Belgium.,Department of Imaging and Pathology, Biomedical MRI, KU Leuven, Leuven, Belgium
| | - David W Denning
- Manchester Fungal Infection Group, the University of Manchester and Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Chris Kosmidis
- National Aspergillosis Centre, Manchester University Foundation Trust, UK, and Manchester Academic Health Science Centre, the University of Manchester, Manchester, UK
| | - Katrien Lagrou
- Department of Microbiology, Laboratory of Clinical Bacteriology and Mycology, Immunology and Transplantation, KU Leuven, Leuven, Belgium.,Department of Laboratory Medicine and National Reference Center for Mycosis, University Hospitals Leuven, Leuven, Belgium
| | - Hanying Zhong
- Department for Disinfection and Infection Control, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Li Han
- Department for Disinfection and Infection Control, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|