1
|
Liu CC, Hsiao WWL. Machine learning reveals the dynamic importance of accessory sequences for Salmonella outbreak clustering. mBio 2025:e0265024. [PMID: 39873499 DOI: 10.1128/mbio.02650-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 11/25/2024] [Indexed: 01/30/2025] Open
Abstract
Bacterial typing at whole-genome scales is now feasible owing to decreasing costs in high-throughput sequencing and the recent advances in computation. The unprecedented resolution of whole-genome typing is achieved by genotyping the variable segments of bacterial genomes that can fluctuate significantly in gene content. However, due to the transient and hypervariable nature of many accessory elements, the value of the added resolution in outbreak investigations remains disputed. To assess the analytical value of bacterial accessory genomes in clustering epidemiologically related cases, we trained classifiers on a set of genomes collected from 24 Salmonella enterica outbreaks of food, animal, or environmental origin. The models demonstrated high precision and recall on unseen test data with near-perfect accuracy in classifying clonal and short-term outbreaks. Annotating the genomic features important for cluster classification revealed functional enrichment of molecular fingerprints in genes involved in membrane transportation, trafficking, and carbohydrate metabolism. Importantly, we discovered polymorphisms in mobile genetic elements (MGEs) and gain/loss of MGEs to be informative in defining outbreak clusters. To quantify the ability of MGE variations to cluster outbreak clones, we devised a reference-free tree-building algorithm inspired by colored de Bruijn graphs, which enabled topological comparisons between MGE and standard typing methods. Systematic evaluation of clustering MGEs on an unseen dataset of 34 Salmonella outbreaks yielded mixed results that exemplified the power of accessory sequence variations when core genomes of unrelated cases are insufficiently discriminatory, as well as the distortion of outbreak signals by microevolution events or the incomplete assembly of MGEs. IMPORTANCE Gene-by-gene typing is widely used to detect clusters of foodborne illnesses that share a common origin. It remains actively debated whether the inclusion of accessory sequences in bacterial typing schema is informative or deleterious for cluster definitions in outbreak investigations due to the potential confounding effects of horizontal gene transfer. By training machine learning models on a curated set of historical Salmonella outbreaks, we revealed an enriched presence of outbreak distinguishing features in a wide range of mobile genetic elements. Systematic comparison of the efficacy of clustering different accessory elements against standard sequence typing methods led to our cataloging of scenarios where accessory sequence variations were beneficial and uninformative to resolving outbreak clusters. The presented work underscores the complexity of the molecular trends in enteric outbreaks and seeks to inspire novel computational ways to exploit whole-genome sequencing data in enteric disease surveillance and management.
Collapse
Affiliation(s)
- Chao Chun Liu
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - William W L Hsiao
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
2
|
Atkins H, Sabharwal B, Boger L, Stegman N, Kula A, Wolfe AJ, Banerjee S, Putonti C. Evidence of Lactobacillus strains shared between the female urinary and vaginal microbiota. Microb Genom 2024; 10:001267. [PMID: 38949867 PMCID: PMC11316553 DOI: 10.1099/mgen.0.001267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 06/14/2024] [Indexed: 07/02/2024] Open
Abstract
Lactobacillus species are common inhabitants of the 'healthy' female urinary and vaginal communities, often associated with a lack of symptoms in both anatomical sites. Given identification by prior studies of similar bacterial species in both communities, it has been hypothesized that the two microbiotas are in fact connected. Here, we carried out whole-genome sequencing of 49 Lactobacillus strains, including 16 paired urogenital samples from the same participant. These strains represent five different Lactobacillus species: L. crispatus, L. gasseri, L. iners, L. jensenii, and L. paragasseri. Average nucleotide identity (ANI), alignment, single-nucleotide polymorphism (SNP), and CRISPR comparisons between strains from the same participant were performed. We conducted simulations of genome assemblies and ANI comparisons and present a statistical method to distinguish between unrelated, related, and identical strains. We found that 50 % of the paired samples have identical strains, evidence that the urinary and vaginal communities are connected. Additionally, we found evidence of strains sharing a common ancestor. These results establish that microbial sharing between the urinary tract and vagina is not limited to uropathogens. Knowledge that these two anatomical sites can share lactobacilli in females can inform future clinical approaches.
Collapse
Affiliation(s)
- Haley Atkins
- Bioinformatics Program, Loyola University Chicago, Chicago, IL, USA
| | - Baani Sabharwal
- Department of Molecular Environmental Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Leah Boger
- Data Science Program, Loyola University Chicago, Chicago, IL, USA
| | - Natalie Stegman
- Bioinformatics Program, Loyola University Chicago, Chicago, IL, USA
| | - Alexander Kula
- Department of Biology, Loyola University Chicago, Chicago, IL, USA
| | - Alan J. Wolfe
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| | - Swarnali Banerjee
- Data Science Program, Loyola University Chicago, Chicago, IL, USA
- Department of Mathematics and Statistics, Loyola University Chicago, Chicago, IL, USA
| | - Catherine Putonti
- Bioinformatics Program, Loyola University Chicago, Chicago, IL, USA
- Department of Biology, Loyola University Chicago, Chicago, IL, USA
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| |
Collapse
|
3
|
Cassone M, Wang J, Lansing BJ, Mantey J, Gibson KE, Gontjes KJ, Mody L. Diversity and Persistence of MRSA and VRE in Skilled Nursing Facilities: Environmental Screening, Whole Genome Sequencing, Development of a Dispersion Index. J Hosp Infect 2023:S0195-6701(23)00140-8. [PMID: 37160232 DOI: 10.1016/j.jhin.2023.04.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/28/2023] [Accepted: 04/30/2023] [Indexed: 05/11/2023]
Abstract
BACKGROUND Environmental contamination with methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE) in skilled nursing facilities (SNFs) may contribute to patient acquisition. We assessed diversity and association of MRSA and VRE isolates in a SNF wing and developed a mathematical index to define each strain's tendency to persist in rooms and spread horizontally. METHODS Longitudinal study of MRSA and VRE colonization and contamination among successive patient occupancies in a cluster of nine SNF private rooms during eight months characterized by microbiological testing and whole genome isolate typing. 'Dispersion index" of a strain is defined as the number of rooms it was found in (including the patient), divided by the average of times it was found consecutively in the same room. FINDINGS MRSA (ten strain types) and VRE (seven types) were recovered from room or patient in 16.4% and 35.6% of the occupancies, respectively. MRSA showed moderate horizontal spread and several episodes of same-room persistence (three distinct strain types) (overall dispersion index: 1.08). VRE showed high tendency towards horizontal spread /new introductions (overall dispersion index: 3.25), and only one confirmed persistence episode. INTERPRETATION The emerging picture of high diversity among contaminating strains and high likelihood of room persistence despite terminal cleaning (MRSA) and horizontal spread between rooms (VRE) in this setting calls for improved cleaning practices, heightened contact precautions, and most of all to establish individually tailored facility screening programs to enable informed choices based on local, measurable and actionable epidemiologic parameters. FUNDING University of Michigan OAIC REC Scholarship to M.C. National Institutes of Health K24 AG050685 to L.M.
Collapse
Affiliation(s)
- M Cassone
- Division of Geriatric & Palliative Medicine, Michigan Medicine.
| | - J Wang
- Department of Microbiology and Immunology, Michigan Medicine
| | - B J Lansing
- Division of Geriatric & Palliative Medicine, Michigan Medicine
| | - J Mantey
- Division of Geriatric & Palliative Medicine, Michigan Medicine
| | - K E Gibson
- Division of Geriatric & Palliative Medicine, Michigan Medicine
| | - K J Gontjes
- Division of Geriatric & Palliative Medicine, Michigan Medicine; Department of Epidemiology, University of Michigan School of Public Health
| | - L Mody
- Division of Geriatric & Palliative Medicine, Michigan Medicine; Geriatrics Research Education & Clinical Center, VA Ann Arbor Healthcare System
| |
Collapse
|
4
|
Zhou K, Xue CX, Xu T, Shen P, Wei S, Wyres KL, Lam MMC, Liu J, Lin H, Chen Y, Holt KE, Xiao Y. A point mutation in recC associated with subclonal replacement of carbapenem-resistant Klebsiella pneumoniae ST11 in China. Nat Commun 2023; 14:2464. [PMID: 37117217 PMCID: PMC10147710 DOI: 10.1038/s41467-023-38061-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 04/13/2023] [Indexed: 04/30/2023] Open
Abstract
Adaptation to selective pressures is crucial for clinically important pathogens to establish epidemics, but the underlying evolutionary drivers remain poorly understood. The current epidemic of carbapenem-resistant Klebsiella pneumoniae (CRKP) poses a significant threat to public health. In this study we analyzed the genome sequences of 794 CRKP bloodstream isolates collected in 40 hospitals in China between 2014 and 2019. We uncovered a subclonal replacement in the predominant clone ST11, where the previously prevalent subclone OL101:KL47 was replaced by O2v1:KL64 over time in a stepwise manner. O2v1:KL64 carried a higher load of mobile genetic elements, and a point mutation exclusively detected in the recC of O2v1:KL64 significantly promotes recombination proficiency. The epidemic success of O2v1:KL64 was further associated with a hypervirulent sublineage with enhanced resistance to phagocytosis, sulfamethoxazole-trimethoprim, and tetracycline. The phenotypic alterations were linked to the overrepresentation of hypervirulence determinants and antibiotic genes conferred by the acquisition of an rmpA-positive pLVPK-like virulence plasmid and an IncFII-type multidrug-resistant plasmid, respectively. The dissemination of the sublineage was further promoted by more frequent inter-hospital transmission. The results collectively demonstrate that the expansion of O2v1:KL64 is correlated to a repertoire of genomic alterations convergent in a subpopulation with evolutionary advantages.
Collapse
Affiliation(s)
- Kai Zhou
- Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China.
| | - Chun-Xu Xue
- Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Tingting Xu
- Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Ping Shen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Sha Wei
- Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Kelly L Wyres
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Margaret M C Lam
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Jinquan Liu
- Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Haoyun Lin
- Department of Clinical Laboratory, Shenzhen People's Hospital, Shenzhen, China
| | - Yunbo Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Kathryn E Holt
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
5
|
Luterbach CL, Chen L, Komarow L, Ostrowsky B, Kaye KS, Hanson B, Arias CA, Desai S, Gallagher JC, Novick E, Pagkalinawan S, Lautenbach E, Wortmann G, Kalayjian RC, Eilertson B, Farrell JJ, McCarty T, Hill C, Fowler VG, Kreiswirth BN, Bonomo RA, van Duin D. Transmission of Carbapenem-Resistant Klebsiella pneumoniae in US Hospitals. Clin Infect Dis 2023; 76:229-237. [PMID: 36173830 PMCID: PMC10202433 DOI: 10.1093/cid/ciac791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/08/2022] [Accepted: 09/23/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Carbapenem-resistant Klebsiella pneumoniae (CRKp) is the most prevalent carbapenem-resistant Enterobacterales in the United States. We evaluated CRKp clustering in patients in US hospitals. METHODS From April 2016 to August 2017, 350 patients with clonal group 258 CRKp were enrolled in the Consortium on Resistance Against Carbapenems in Klebsiella and other Enterobacteriaceae, a prospective, multicenter, cohort study. A maximum likelihood tree was constructed using RAxML. Static clusters shared ≤21 single-nucleotide polymorphisms (SNP) and a most recent common ancestor. Dynamic clusters incorporated SNP distance, culture timing, and rates of SNP accumulation and transmission using the R program TransCluster. RESULTS Most patients were admitted from home (n = 150, 43%) or long-term care facilities (n = 115, 33%). Urine (n = 149, 43%) was the most common isolation site. Overall, 55 static and 47 dynamics clusters were identified involving 210 of 350 (60%) and 194 of 350 (55%) patients, respectively. Approximately half of static clusters were identical to dynamic clusters. Static clusters consisted of 33 (60%) intrasystem and 22 (40%) intersystem clusters. Dynamic clusters consisted of 32 (68%) intrasystem and 15 (32%) intersystem clusters and had fewer SNP differences than static clusters (8 vs 9; P = .045; 95% confidence interval [CI]: -4 to 0). Dynamic intersystem clusters contained more patients than dynamic intrasystem clusters (median [interquartile range], 4 [2, 7] vs 2 [2, 2]; P = .007; 95% CI: -3 to 0). CONCLUSIONS Widespread intrasystem and intersystem transmission of CRKp was identified in hospitalized US patients. Use of different methods for assessing genetic similarity resulted in only minor differences in interpretation.
Collapse
Affiliation(s)
- Courtney L Luterbach
- Division of Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina, USA
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Liang Chen
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Lauren Komarow
- Biostatistics Center, George Washington University, Rockville, Maryland, USA
| | - Belinda Ostrowsky
- Division of Infectious Diseases, Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Keith S Kaye
- Division of Infectious Diseases, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Blake Hanson
- Division of Infectious Diseases and Center for Antimicrobial Resistance and Microbial Genomics, UTHealth, McGovern School of Medicine at Houston, Houston, Texas, USA
- Center for Infectious Diseases, UTHealth School of Public Health, Houston, Texas, USA
| | - Cesar A Arias
- Division of Infectious Diseases and Center for Antimicrobial Resistance and Microbial Genomics, UTHealth, McGovern School of Medicine at Houston, Houston, Texas, USA
- Center for Infectious Diseases, UTHealth School of Public Health, Houston, Texas, USA
- Molecular Genetics and Antimicrobial Resistance Unit–International Center for Microbial Genomics, Universidad El Bosque, Bogota, Columbia
| | - Samit Desai
- Division of Infectious Diseases, Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - Jason C Gallagher
- Temple University School of Pharmacy, Philadelphia, Pennsylvania, USA
| | - Elizabeth Novick
- Temple University School of Pharmacy, Philadelphia, Pennsylvania, USA
| | | | - Ebbing Lautenbach
- Division of Infectious Diseases, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Glenn Wortmann
- Section of Infectious Diseases, MedStar Washington Hospital Center, Washington, District of Columbia, USA
| | - Robert C Kalayjian
- Department of Medicine, MetroHealth Medical Center, Cleveland, Ohio, USA
| | - Brandon Eilertson
- Division of Infectious Diseases, Department of Medicine, State University of New York Downstate, Brooklyn, NY, USA
| | - John J Farrell
- Division of Infectious Disease, Department of Internal Medicine, OSF Saint Francis Medical Center, University of Illinois College of Medicine at Peoria, Peoria, Illinois, USA
| | - Todd McCarty
- Division of Infectious Disease, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Carol Hill
- Duke Clinical Research Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Vance G Fowler
- Duke Clinical Research Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Barry N Kreiswirth
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Robert A Bonomo
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Departments of Pharmacology, Molecular Biology and Microbiology, Biochemistry, and Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Case Western Reserve University-Cleveland Veterans Affairs Medical Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| | - David van Duin
- Division of Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina, USA
| | | |
Collapse
|