1
|
Nguyen JC, Caine D. The Immature Pediatric Appendicular Skeleton. Semin Musculoskelet Radiol 2024; 28:361-374. [PMID: 39074720 DOI: 10.1055/s-0044-1786151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Growth and maturation occur in a predictable pattern throughout the body and within each individual bone. In the appendicular skeleton, endochondral ossification predominates in long bones and growth plates. The ends of these long bones are sites of relative weakness in the immature skeleton and prone to injury from acute insult and overuse. We present the normal histoanatomy and physiology of the growth plate complex, highlighting the unique contribution of each component and shared similarities between primary and secondary complexes. Components of the growth plate complex include the physis proper, subjacent vascularity within the growth cartilage, and the ossification front. The second section describes imaging considerations and features of normal and abnormal growth. Finally, we review the Salter-Harris classification for acute fractures and offer examples of characteristic overuse injury patterns involving the epiphyseal (proximal humerus and distal radius), apophyseal (medial epicondyle and tibial tubercle), and secondary growth plate complexes (medial femoral condyle and capitellar osteochondritis dissecans). This article provides a foundation and basic framework to better understand and anticipate potential complications and growth disturbances and to ensure optimal follow-up and early intervention when treatment can be less invasive.
Collapse
Affiliation(s)
- Jie C Nguyen
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Dennis Caine
- Division of Education, Health and Behavior Studies, Kinesiology and Public Health Education, University of North Dakota, Grand Forks, North Dakota
| |
Collapse
|
2
|
Li C, Ma LK, Zhang ZY, Tang XJ, Liu W, Xu X, Feng S, Zhao SB, Zhang ZY. Using Auricular Cartilage-fascia Composite Tissue Free Grafting Technique to Improve Cartilage Survival Outcomes. J Craniofac Surg 2024:00001665-990000000-01382. [PMID: 38408322 DOI: 10.1097/scs.0000000000010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/08/2024] [Indexed: 02/28/2024] Open
Abstract
OBJECTIVES Auricular cartilage graft has a wide range of applications in plastic and reconstructive surgery. However, there is still a risk of absorption of the grafts over time. Intrinsic postauricular fascia (IPF) with a rich vascular network may play an important role in the nutrition and repair of auricular cartilage. This study aimed to investigate the effect of IPF on the survival viability of free auricular cartilage grafts. METHODS 24 auricular cartilages were obtained from 6 New Zealand white rabbits which were divided into the cartilage-fascia composite graft group (FC group, n=12) and the cartilage without fascia group (C group, n=12). Two groups of cartilage were implanted into each side of the subcutaneous pocket of the rabbit's dorsum. The rabbits were sacrificed after 3 months and all cartilage grafts were obtained. Macroscopic observation, histopathological staining, and biomechanical testing were performed on all specimens. RESULTS There were significant differences between the 2 groups regarding proliferating chondrocytes, apoptotic chondrocytes, vascularization, and matrix collagen. Compared to the auricular cartilage grafts without fascia, the auricular cartilage-fascia composite grafts had more neovascularization, proliferative chondrocytes, and type II collagen, with a homogeneous cartilage matrix and no obvious areas of heterogeneous staining. Young's modulus and ultimate tensile strength of cartilage were reduced in both groups compared to pretransplantation, but the composite graft group was superior to the fascia-free group. CONCLUSIONS Auricular cartilage-fascial composite tissue free graft could improve cartilage survival outcomes with higher viability and mechanical properties.
Collapse
Affiliation(s)
- Chuan Li
- Departments of Cranio-Maxillofacial Surgery
| | - Lun-Kun Ma
- Departments of Cranio-Maxillofacial Surgery
| | - Ze-Ya Zhang
- Auricular Reconstruction, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College
| | | | - Wei Liu
- Departments of Cranio-Maxillofacial Surgery
| | - Xi Xu
- Departments of Cranio-Maxillofacial Surgery
| | - Shi Feng
- Departments of Cranio-Maxillofacial Surgery
| | | | | |
Collapse
|
3
|
Lim DW, Lee C. The Effects of Natural Product-Derived Extracts for Longitudinal Bone Growth: An Overview of In Vivo Experiments. Int J Mol Sci 2023; 24:16608. [PMID: 38068932 PMCID: PMC10706747 DOI: 10.3390/ijms242316608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/20/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Approximately 80% of children with short stature are classified as having Idiopathic Short Stature (ISS). While growth hormone (GH) treatment received FDA approval in the United States in 2003, its long-term impact on final height remains debated. Other treatments, like aromatase inhibitors, metformin, and insulin-like growth factor-1 (IGF-1), have been explored, but there is no established standard treatment for ISS. In South Korea and other Asian countries, East Asian Traditional Medicine (EATM) is sometimes employed by parents to potentially enhance their children's height growth, often involving herbal medicines. One such product, Astragalus membranaceus extract mixture HT042, claims to promote height growth in children and has gained approval from the Korean Food and Drug Administration (KFDA). Research suggests that HT042 supplementation can increase height growth in children without skeletal maturation, possibly by elevating serum IGF-1 and IGF-binding protein-3 levels. Preclinical studies also indicate the potential benefits of natural products, including of EATM therapies for ISS. The purpose of this review is to offer an overview of bone growth factors related to ISS and to investigate the potential of natural products, including herbal preparations, as alternative treatments for managing ISS symptoms, based on their known efficacy in in vivo studies.
Collapse
Affiliation(s)
| | - Changho Lee
- Division of Functional Food Research, Korea Food Research Institute, Wanju 55365, Republic of Korea;
| |
Collapse
|
4
|
Armstrong AR, Tóth F, Carlson CS, Kim HKW, Johnson CP. Effects of acute femoral head ischemia on the growth plate and metaphysis in a piglet model of Legg-Calvé-Perthes disease. Osteoarthritis Cartilage 2023; 31:766-774. [PMID: 36696941 PMCID: PMC10200741 DOI: 10.1016/j.joca.2023.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/27/2022] [Accepted: 01/17/2023] [Indexed: 01/23/2023]
Abstract
OBJECTIVE To determine the effects of acute (≤7 days) femoral head ischemia on the proximal femoral growth plate and metaphysis in a piglet model of Legg-Calvé-Perthes disease (LCPD). We hypothesized that qualitative and quantitative histological assessment would identify effects of ischemia on endochondral ossification. DESIGN Unilateral femoral head ischemia was surgically induced in piglets, and femurs were collected for histological assessment at 2 (n = 7) or 7 (n = 5) days post-ischemia. Samples were assessed qualitatively, and histomorphometry of the growth plate zones and primary spongiosa was performed. In a subset of samples at 7 days, hypertrophic chondrocytes were quantitatively assessed and immunohistochemistry for TGFβ1 and Indian hedgehog was performed. RESULTS By 2 days post-ischemia, there was significant thinning of the proliferative and hypertrophic zones, by 63 μm (95% CI -103, -22) and -19 μm (95% CI -33, -5), respectively. This thinning persisted at 7 days post-ischemia. Likewise, at 7 days post-ischemia, the primary spongiosa was thinned to absent by an average of 311 μm (95% CI -542, -82) in all ischemic samples. TGFβ1 expression was increased in the hypertrophic zone at 7 days post-ischemia. CONCLUSIONS Alterations to the growth plate zones and metaphysis occurred by 2 days post-ischemia and persisted at 7 days post-ischemia. Our findings suggest that endochondral ossification may be disrupted at an earlier time point than previously reported and that growth disruption may occur in the piglet model as occurs in some children with LCPD.
Collapse
Affiliation(s)
- A R Armstrong
- Department of Veterinary Clinical Sciences, University of Minnesota, St. Paul, MN, USA.
| | - F Tóth
- Department of Veterinary Clinical Sciences, University of Minnesota, St. Paul, MN, USA.
| | - C S Carlson
- Department of Veterinary Clinical Sciences, University of Minnesota, St. Paul, MN, USA.
| | - H K W Kim
- Center for Excellence in Hip, Scottish Rite for Children, Dallas, TX, USA; Department of Orthopedic Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| | - C P Johnson
- Department of Veterinary Clinical Sciences, University of Minnesota, St. Paul, MN, USA; Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
5
|
Figus C, Stephens NB, Sorrentino R, Bortolini E, Arrighi S, Higgins OA, Lugli F, Marciani G, Oxilia G, Romandini M, Silvestrini S, Baruffaldi F, Belcastro MG, Bernardini F, Festa A, Hajdu T, Mateovics‐László O, Pap I, Szeniczey T, Tuniz C, Ryan TM, Benazzi S. Morphologies in-between: The impact of the first steps on the human talus. Anat Rec (Hoboken) 2023; 306:124-142. [PMID: 35656925 PMCID: PMC10083965 DOI: 10.1002/ar.25010] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 01/29/2023]
Abstract
OBJECTIVE The development of bipedalism is a very complex activity that contributes to shaping the anatomy of the foot. The talus, which starts ossifying in utero, may account for the developing stages from the late gestational phase onwards. Here, we explore the early development of the talus in both its internal and external morphology to broaden the knowledge of the anatomical changes that occur during early development. MATERIALS AND METHODS The sample consists of high-resolution microCT scans of 28 modern juvenile tali (from 36 prenatal weeks to 2 years), from a broad chronological range from the Late Roman period to the 20th century. We applied geometric morphometric and whole-bone trabecular analysis to investigate the early talar morphological changes. RESULTS In the youngest group (<6 postnatal months), the immature external shell is accompanied by an isotropic internal structure, with thin and densely packed trabeculae. After the initial attempts of locomotion, bone volume fraction decreases, while anisotropy and trabecular thickness increase. These internal changes correspond to the maturation of the external shell, which is now more defined and shows the development of the articular surfaces. DISCUSSION The internal and external morphology of the human talus reflects the diverse load on the foot during the initial phases of the bipedal locomotion, with the youngest group potentially reflecting the lack of readiness of the human talus to bear forces and perform bipedal walking. These results highlight the link between mechanical loading and bone development in the human talus during the acquisition of bipedalism, providing new insight into the early phases of talar development.
Collapse
Affiliation(s)
- Carla Figus
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
| | - Nicholas B. Stephens
- Department of AnthropologyPennsylvania State UniversityState CollegePennsylvaniaUSA
| | - Rita Sorrentino
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
- Department of Biological, Geological and Environmental Sciences – BigeaUniversity of BolognaBolognaItaly
| | - Eugenio Bortolini
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
- Human Ecology and Archaeology (HUMANE)IMF, CSI0CBarcelonaSpain
| | - Simona Arrighi
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
| | - Owen A. Higgins
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
| | - Federico Lugli
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
| | - Giulia Marciani
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
- Research Unit Prehistory and Anthropology, Department of Physical Sciences, Earth and EnvironmentUniversity of SienaSienaItaly
| | - Gregorio Oxilia
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
| | - Matteo Romandini
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
| | - Sara Silvestrini
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
| | - Fabio Baruffaldi
- Laboratory of Medical TechnologyIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Maria Giovanna Belcastro
- Department of Biological, Geological and Environmental Sciences – BigeaUniversity of BolognaBolognaItaly
| | - Federico Bernardini
- Department of Humanistic StudiesUniversità Ca'FoscariVeneziaItaly
- Multidisciplinary LaboratoryAbdus Salam International Centre for Theoretical PhysicsTriesteItaly
| | - Anna Festa
- Laboratory of Medical TechnologyIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Tamás Hajdu
- Department of Biological Anthropology, Institute of Biology, Faculty of ScienceEötvös Loránd UniversityBudapestHungary
| | | | - Ildiko Pap
- Department of Biological Anthropology, Institute of Biology, Faculty of ScienceEötvös Loránd UniversityBudapestHungary
- Department of Biological Anthropology, Institute of Biology, Faculty of Science and InformaticsSzeged UniversitySzegedHungary
- Department of AnthropologyHungarian Natural History MuseumBudapestHungary
| | - Tamás Szeniczey
- Department of Biological Anthropology, Institute of Biology, Faculty of ScienceEötvös Loránd UniversityBudapestHungary
| | - Claudio Tuniz
- Multidisciplinary LaboratoryAbdus Salam International Centre for Theoretical PhysicsTriesteItaly
- Centre for Archaeological ScienceUniversity of WollongongWollongongNew South WalesAustralia
| | - Timothy M. Ryan
- Department of AnthropologyPennsylvania State UniversityState CollegePennsylvaniaUSA
| | - Stefano Benazzi
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
- Department of Human EvolutionMax Planck Institute for Evolutionary AnthropologyLeipzigGermany
| |
Collapse
|
6
|
Le Pabic P, Dranow DB, Hoyle DJ, Schilling TF. Zebrafish endochondral growth zones as they relate to human bone size, shape and disease. Front Endocrinol (Lausanne) 2022; 13:1060187. [PMID: 36561564 PMCID: PMC9763315 DOI: 10.3389/fendo.2022.1060187] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Research on the genetic mechanisms underlying human skeletal development and disease have largely relied on studies in mice. However, recently the zebrafish has emerged as a popular model for skeletal research. Despite anatomical differences such as a lack of long bones in their limbs and no hematopoietic bone marrow, both the cell types in cartilage and bone as well as the genetic pathways that regulate their development are remarkably conserved between teleost fish and humans. Here we review recent studies that highlight this conservation, focusing specifically on the cartilaginous growth zones (GZs) of endochondral bones. GZs can be unidirectional such as the growth plates (GPs) of long bones in tetrapod limbs or bidirectional, such as in the synchondroses of the mammalian skull base. In addition to endochondral growth, GZs play key roles in cartilage maturation and replacement by bone. Recent studies in zebrafish suggest key roles for cartilage polarity in GZ function, surprisingly early establishment of signaling systems that regulate cartilage during embryonic development, and important roles for cartilage proliferation rather than hypertrophy in bone size. Despite anatomical differences, there are now many zebrafish models for human skeletal disorders including mutations in genes that cause defects in cartilage associated with endochondral GZs. These point to conserved developmental mechanisms, some of which operate both in cranial GZs and limb GPs, as well as others that act earlier or in parallel to known GP regulators. Experimental advantages of zebrafish for genetic screens, high resolution live imaging and drug screens, set the stage for many novel insights into causes and potential therapies for human endochondral bone diseases.
Collapse
Affiliation(s)
- Pierre Le Pabic
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Willmington, NC, United States
| | - Daniel B. Dranow
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, United States
| | - Diego J. Hoyle
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, United States
| | - Thomas F. Schilling
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
7
|
Reid RAG, Davies C, Cunningham C. The developing juvenile distal tibia: Radiographic identification of distinct ontogenetic phases and structural trajectories. J Anat 2022; 242:191-212. [PMID: 36219719 PMCID: PMC9877483 DOI: 10.1111/joa.13778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 08/02/2022] [Accepted: 09/29/2022] [Indexed: 02/01/2023] Open
Abstract
A novel combination of radiographic colour gradient mapping and radiographic absorptiometry was utilised to examine 96 human distal tibiae from 54 individuals ranging in age-at-death from the foetal to 23 years. The purpose of this was to identify previously undocumented changes in the internal organisation during the development of the distal tibia and determine whether these changes could be described as distinct phases. Previous studies have demonstrated a rudimentary structural organisation in other skeletal elements that mirror more mature patterns of bone organisation. Results showed that the perinatal tibia did not exhibit a rudimentary structural pattern similar to the architecture observed within the late adolescent tibia. This lack of early internal organisation is hypothesised to be related to the rudimentary ossification process that is being laid down around a pre-existing vascular template which will be subsequently modified by locomotive forces. Between birth and 2 years of age, the tibia exhibited a period of regression where radiodensity decreased in comparison to the perinatal tibia. This period of regression was postulated to be due to a combination of factors including changing locomotive forces, weaning and growth resulting in a stage of development which is extremely demanding on calcium liberation from the skeleton. After 2 years of age, the distal tibia demonstrated refinement where radiographic trajectories progressively developed into patterns consistent with adult trabecular organisation. These trajectories are linked to the forces associated with the bipedal gait, suggesting a strong influence of biomechanical forces on the development of the distal tibia.
Collapse
Affiliation(s)
| | - Catriona Davies
- Centre for Anatomy and Human IdentificationUniversity of DundeeDundeeUK
| | - Craig Cunningham
- Centre for Anatomy and Human IdentificationUniversity of DundeeDundeeUK
| |
Collapse
|
8
|
Zachurzok A, Mayr J, Rutz E, Tomaszewski R. Dimensions of the anterior cruciate ligament and thickness of the distal femoral growth plate in children: a MRI-based study. Arch Orthop Trauma Surg 2022; 143:2363-2372. [PMID: 35438332 DOI: 10.1007/s00402-022-04441-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/01/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND When determining the dimensions of an anterior cruciate ligament (ACL) graft in children, bone age should be considered in addition to the patient's age, gender, and body height. OBJECTIVES We aimed to determine the relationship between age, gender, and ACL dimensions as well as thickness of growth plate cartilage of the distal femur during puberty. METHODS We retrospectively analyzed MRI scans of the knee in 131 children (82 girls, 49 boys) aged 6-18 years (mean age: 14.9 ± 2.6 years). ACL length and width as well as thickness of the growth plate cartilage at the distal femoral epiphysis were measured. RESULTS Mean ACL length increased linearly up to the age of 12 years in females and 14 years in males; thereafter, mean ACL length remained constant. Mean ACL length was largest at the age of 12 to < 13 years (38.18 mm) in females and at 15 to < 16 years (39.38 mm) in males. Mean ACL width increased up to the age of 12 years in girls and 13 years in boys. After the age of 12 years, both the ACL length and width were significantly larger in boys than girls (p = 0.002 and p = 0.045, respectively). Mean thickness of the growth plate cartilage of the distal femur remained stable up to the age of 12 years in girls and 14 years in boys. Thickness of the growth plate cartilage changed most markedly between the age intervals of 11 to < 12 years and 12 to < 13 years in girls and between the age intervals of 13 to < 14 years and 14 to < 15 years in boys. CONCLUSIONS ACL dimensions depended on both age and gender during the growth period. Measurement of cartilage thickness of the femoral distal growth plate proved to be an objective parameter to assess the maturation stage of local bone. This may be useful for the planning and timing of orthopedic ACL procedures. LEVEL OF EVIDENCE III-retrospective cohort study.
Collapse
Affiliation(s)
- Agnieszka Zachurzok
- Department of Pediatrics and Pediatric Endocrinology, School of Medicine, Medical University of Silesia, Katowice, Poland
| | - Johannes Mayr
- Department of Pediatric Surgery, University Children's Hospital of Basel, University of Basel, Basel, Switzerland
| | - Erich Rutz
- Paediatric Orthopaedic Department, The Royal Children's Hospital, Parkville, VIC 2052, Australia. .,Department of Paediatrics, Bob Dickens Chair for Paediatric Orthopaedic Surgery, The University of Melbourne, Melbourne, VIC 3052, Australia. .,Hugh Williamson Gait Analysis Laboratory, The Royal Children's Hospital, Melbourne, VIC 3052, Australia. .,Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia. .,Medical Faculty, University of Basel, 4001, Basel, Switzerland.
| | - Ryszard Tomaszewski
- Institute of Biomedical Engineering, Faculty of Science and Technology, University of Silesia, Katowice, Poland.,Department of Pediatric Traumatology and Orthopedics, Upper Silesian Child Centre, Katowice, Poland
| |
Collapse
|
9
|
Saers JPP, Gordon AD, Ryan TM, Stock JT. Growth and development of trabecular structure in the calcaneus of Japanese macaques (Macaca fuscata) reflects locomotor behavior, life history, and neuromuscular development. J Anat 2022; 241:67-81. [PMID: 35178713 PMCID: PMC9178394 DOI: 10.1111/joa.13641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 11/30/2022] Open
Abstract
Bone structure dynamically adapts to its mechanical environment throughout ontogeny by altering the structure of trabecular bone, the three-dimensional mesh-like structure found underneath joint surfaces. Trabecular structure, then, can provide a record of variation in loading directions and magnitude; and in ontogenetic samples, it can potentially be used to track developmental shifts in limb posture. We aim to broaden the analysis of trabecular bone ontogeny by incorporating interactions between ontogenetic variation in locomotor repertoire, neuromuscular maturation, and life history. We examine the associations between these variables and age-related variation in trabecular structure in the calcaneus of Japanese macaques (Macaca fuscata). We used high-resolution micro-computed tomography scanning to image the calcaneus in a cross-sectional sample of 34 juvenile M. fuscata aged between 0 and 7 years old at the Primate Research Institute, Japan. We calculated whole bone averages of standard trabecular properties and generated whole-bone morphometric maps of bone volume fraction and Young's modulus. Trabecular structure becomes increasingly heterogeneous in older individuals. Bone volume fraction (BV/total volume [TV]) decreases during the first month of life and increases afterward, coinciding with the onset of independent locomotion in M. fuscata. At birth, primary Young's modulus is oriented orthogonal to the ossification center, but after locomotor onset bone structure becomes stiffest in the direction of joint surfaces and muscle attachments. Age-related variation in bone volume fraction is best predicted by an interaction between the estimated percentage of adult brain size, body mass, and locomotor onset. To explain our findings, we propose a model where interactions between age-related increases in body weight and maturation of the neuromuscular system alter the loading environment of the calcaneus, to which the internal trabecular structure dynamically adapts. This model cannot be directly tested based on our cross-sectional data. However, confirmation of the model by longitudinal experiments and in multiple species would show that trabecular structure can be used both to infer behavior from fossil morphology and serve as a valuable proxy for neuromuscular maturation and life history events like locomotor onset and the achievement of an adult-like gait. This approach could significantly expand our knowledge of the biology and behavior of fossil species.
Collapse
Affiliation(s)
- Jaap P P Saers
- Department of Archaeology, Cambridge University, Cambridge, UK
| | - Adam D Gordon
- Department of Anthropology, University at Albany, SUNY, Albany, New York, USA
| | - Timothy M Ryan
- Department of Anthropology, Pennsylvania State University, State College, Pennsylvania, USA
| | - Jay T Stock
- Department of Archaeology, Cambridge University, Cambridge, UK.,Department of Anthropology, Western University, London, Ontario, Canada
| |
Collapse
|
10
|
Sattelberger J, Hillebrand H, Gosheger G, Laufer A, Frommer A, Appelbaum S, Abood AAH, Gottliebsen M, Rahbek O, Moller-Madsen B, Roedl R, Vogt B. Comparison of histomorphometric and radiographic effects of growth guidance with tension-band devices (eight-Plate and FlexTack) in a pig model. Acta Orthop 2021; 92:364-370. [PMID: 33461381 PMCID: PMC8231350 DOI: 10.1080/17453674.2021.1873603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Background and purpose - Temporary hemiepiphysiodesis for growth modulation in skeletally immature patients is a long-known technique. Recently the use of tension-band devices has become popular. This study compares 2 tension-band implants (eight-Plate and FlexTack) regarding their effects on the growth plate.Animals and methods - 12 pigs in 2 equally sized groups (A and B) were investigated. The right proximal medial tibia was treated with either eight-Plate or FlexTack. The left tibia of the same pig was treated with the opposite implant. After 9 weeks all implants were removed. Animals in group B were then hosted for another 5 weeks. Histomorphometric analysis of the growth plate was carried out after 9 and 14 weeks, respectively. Radiographs were taken at implantation, removal, and after 14 weeks.Results - Both tension-band devices achieved a statistically significant and clinically relevant growth inhibition, whereas the effect appeared to be more distinct after the use of FlexTack. Implant-related complications or physeal damage was not observed. After implant removal, rebound phenomenon was radiologically observed in all cases. The growth plates treated with eight-Plate showed a paradox reversal of the zonal distributions, with an increase of the proliferative zones at the previously arrested medial aspect of the physis and a decrease laterally.Interpretation - Both eight-Plate and FlexTack proved to be appropriate devices for growth-guiding treatment. The radiographic evaluation showed a change in angular axes after treatment with each implant, while the correction appeared to be faster with FlexTack. The paradox cartilaginous reaction observed after removal of the eight-Plate might be a histopathological correlate for rebound phenomenon.
Collapse
Affiliation(s)
- Julia Sattelberger
- Department of Pediatric Orthopaedics, Deformity Reconstruction and Foot Surgery, University Hospital Muenster, Germany;
| | - Hauke Hillebrand
- Department of Pediatric Orthopaedics, Deformity Reconstruction and Foot Surgery, University Hospital Muenster, Germany;
| | - Georg Gosheger
- General Orthopaedics and Tumour Orthopaedics, University Hospital of Muenster, Germany;
| | - Andrea Laufer
- Department of Pediatric Orthopaedics, Deformity Reconstruction and Foot Surgery, University Hospital Muenster, Germany; ,Correspondence:
| | - Adrien Frommer
- Department of Pediatric Orthopaedics, Deformity Reconstruction and Foot Surgery, University Hospital Muenster, Germany;
| | - Sebastian Appelbaum
- Department of Research Methodology and Statistics in Psychology, University of Witten/Herdecke, Germany;
| | | | - Martin Gottliebsen
- Danish Paediatric Orthopaedic Research, University Hospital Aarhus, Denmark
| | - Ole Rahbek
- Danish Paediatric Orthopaedic Research, University Hospital Aarhus, Denmark
| | | | - Robert Roedl
- Department of Pediatric Orthopaedics, Deformity Reconstruction and Foot Surgery, University Hospital Muenster, Germany;
| | - Bjoern Vogt
- Department of Pediatric Orthopaedics, Deformity Reconstruction and Foot Surgery, University Hospital Muenster, Germany;
| |
Collapse
|
11
|
Saers JPP, Ryan TM, Stock JT. Baby steps towards linking calcaneal trabecular bone ontogeny and the development of bipedal human gait. J Anat 2020; 236:474-492. [PMID: 31725189 PMCID: PMC7018636 DOI: 10.1111/joa.13120] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2019] [Indexed: 02/06/2023] Open
Abstract
Trabecular bone structure in adulthood is a product of a process of modelling during ontogeny and remodelling throughout life. Insight into ontogeny is essential to understand the functional significance of trabecular bone structural variation observed in adults. The complex shape and loading of the human calcaneus provides a natural experiment to test the relationship between trabecular morphology and locomotor development. We investigated the relationship between calcaneal trabecular bone structure and predicted changes in loading related to development of gait and body size in growing children. We sampled three main trabecular regions of the calcanei using micro-computed tomography scans of 35 individuals aged between neonate to adult from the Norris Farms #36 site (1300 AD, USA) and from Cambridge (1200-1500 AD, UK). Trabecular properties were calculated in volumes of interest placed beneath the calcaneocuboid joint, plantar ligaments, and posterior talar facet. At birth, thin trabecular struts are arranged in a dense and relatively isotropic structure. Bone volume fraction strongly decreases in the first year of life, whereas anisotropy and mean trabecular thickness increase. Dorsal compressive trabecular bands appear around the onset of bipedal walking, although plantar tensile bands develop prior to predicted propulsive toe-off. Bone volume fraction and anisotropy increase until the age of 8, when gait has largely matured. Connectivity density gradually reduces, whereas trabeculae gradually thicken from birth until adulthood. This study demonstrates that three different regions of the calcaneus develop into distinct adult morphologies through varying developmental trajectories. These results are similar to previous reports of ontogeny in human long bones and are suggestive of a relationship between the mechanical environment and trabecular bone architecture in the human calcaneus during growth. However, controlled experiments combined with more detailed biomechanical models of gait maturation are necessary to establish skeletal markers linking growth to loading. This has the potential to be a novel source of information for understanding loading levels, activity patterns, and perhaps life history in the fossil record.
Collapse
Affiliation(s)
- Jaap P. P. Saers
- Department of ArchaeologyMcDonald Institute for Archaeological ResearchUniversity of CambridgeCambridgeUK
| | - Timothy M. Ryan
- Department of AnthropologyPennsylvania State UniversityState CollegePAUSA
| | - Jay T. Stock
- Department of ArchaeologyMcDonald Institute for Archaeological ResearchUniversity of CambridgeCambridgeUK
- Department of AnthropologyUniversity of Western OntarioLondonONCanada
- Department of ArchaeologyMax Planck Institute for the Science of Human HistoryJenaGermany
| |
Collapse
|
12
|
Muratoglu Sahin N, Peltek Kendirci HN, Çetinkaya S, Savaş Erdeve Ş, Aycan Z. The alteration of IGF-1 levels and relationship between IGF-1 levels and growth velocity during GnRH analogue therapy. J Pediatr Endocrinol Metab 2020; 33:113-120. [PMID: 31809263 DOI: 10.1515/jpem-2018-0482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 10/03/2019] [Indexed: 11/15/2022]
Abstract
Background Some studies have examined the effect of gonadal suppression on insulin-like growth factor-1 (IGF-1) levels and the growth velocity (GV) with conflicting results. Methods Forty-four girls treated with gonadotropin-releasing hormone analogue (GnRHa) for central precocious puberty (CPP) were included in the study. IGF-1 levels were examined at the beginning and after 12 months of treatment. Results IGF-1 and IGF-1 standard deviation score (SDS) according to chronological age (CA-IGF-1 SDS) at diagnosis were positively correlated with chronological age (CA), anthropometric measurements, stage of puberty, bone age (BA), BA-CA, follicle-stimulating hormone (FSH), luteinising hormone (LH), oestradiol, uterus length, endometrium thickness and ovarian volume (OV) at diagnosis (p < 0.05). There was no significant difference in IGF-1 levels after treatment. However, there was a negative correlation between ΔIGF-1 SDS and IGF-1 level, CA-IGF-1 SDS and BA-IGF-1 SDS at diagnosis (p < 0.05). There was no correlation between GV and IGF-1, ΔIGF-1. GV was negatively correlated with basal LH level at diagnosis (p = 0.008, r = -0.397). Peak LH levels of the patients who had GV-SDS < 0 were more suppressive than those of the patients who had GV-SDS > 0 after 12 months of treatment. Conclusions It was determined that the IGF-1 level and CA-IGF-1 SDS at baseline were correlated with more advanced pubertal stage prior to treatment. Initiation of treatment with a relatively high level of IGF-1 increased the risk of a decrease in the IGF-1 level. Likewise, the initiation of treatment with a relatively high LH level may increase the risk of low GV, but low GV was not related to the IGF-1 level. Increased sex steroid suppression may increase the risk of low GV.
Collapse
Affiliation(s)
- Nursel Muratoglu Sahin
- Dr. Sami Ulus Obstetrics and Gynaecology, Paediatric Health and Disease Training and Research Hospital, Paediatric Endocrinology Clinic, Ankara, Turkey
| | | | - Semra Çetinkaya
- Dr. Sami Ulus Obstetrics and Gynaecology, Paediatric Health and Disease Training and Research Hospital, Paediatric Endocrinology Clinic, Ankara, Turkey
| | - Şenay Savaş Erdeve
- Dr. Sami Ulus Obstetrics and Gynaecology, Paediatric Health and Disease Training and Research Hospital, Paediatric Endocrinology Clinic, Ankara, Turkey
| | - Zehra Aycan
- Dr. Sami Ulus Obstetrics and Gynaecology, Paediatric Health and Disease Training and Research Hospital, Paediatric Endocrinology Clinic, Ankara, Turkey
| |
Collapse
|
13
|
Beresheim AC, Pfeiffer S, Grynpas M. Ontogenetic changes to bone microstructure in an archaeologically derived sample of human ribs. J Anat 2019; 236:448-462. [PMID: 31729033 DOI: 10.1111/joa.13116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2019] [Indexed: 11/30/2022] Open
Abstract
There is considerable variation in the gross morphology and tissue properties among the bones of human infants, children, adolescents, and adults. Using 18 known-age individuals (nfemale = 8, nmale = 9, nunknown = 1; birth to 21 years old), from a well-documented cemetery collection, Spitalfields Christ Church, London, UK, this study explores growth-related changes in cortical and trabecular bone microstructure. Micro-CT scans of mid-shaft middle thoracic ribs are used for quantitative analysis. Results are then compared to previously quantified conventional histomorphometry of the same sample. Total area (Tt.Ar), cortical area (Ct.Ar), cortical thickness (Ct.Th), and the major (Maj.Dm) and minor (Min.Dm) diameters of the rib demonstrate positive correlations with age. Pore density (Po.Dn) increases, but age-related changes to cortical porosity (Ct.Po) appear to be non-linear. Trabecular thickness (Tb.th) and trabecular separation (Tb.Sp) increase with age, whereas trabecular bone pattern factor (Tb.Pf), structural model index (SMI), and connectivity density (Conn.D) decrease with age. Sex-based differences were not identified for any of the variables included in this study. Some samples display clear evidence of diagenetic alteration without corresponding changes in radiopacity, which compromises the reliability of bone mineral density (BMD) data in the study of past populations. Cortical porosity data are not correlated with two-dimensional measures of osteon population density (OPD). This suggests that unfilled resorption spaces contribute more significantly to cortical porosity than do the Haversian canals of secondary osteons. Continued research using complementary imaging techniques and a wide array of histological variables will increase our understanding of age- and sex-specific ontogenetic patterns within and among human populations.
Collapse
Affiliation(s)
- Amy C Beresheim
- Department of Anatomy, Des Moines University, Des Moines, IA, USA
| | - Susan Pfeiffer
- Department of Anthropology, University of Toronto, Toronto, ON, Canada.,Department of Anthropology, Center for the Advanced Study of Human Paleobiology, George Washington University, Washington, DC, USA.,Department of Archaeology, University of Cape Town, Cape Town, South Africa
| | - Marc Grynpas
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology and Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
14
|
Kraan RBJ, Kox LS, Mens MA, Kuijer PPFM, Maas M. Damage of the distal radial physis in young gymnasts: can three-dimensional assessment of physeal volume on MRI serve as a biomarker? Eur Radiol 2019; 29:6364-6371. [PMID: 31115619 PMCID: PMC6795914 DOI: 10.1007/s00330-019-06247-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/11/2019] [Accepted: 04/19/2019] [Indexed: 11/23/2022]
Abstract
Objective To explore the use of quantitative volume assessment to identify the presence and extent of stress-related changes of the distal radial physis in gymnasts with suspected physeal injury, asymptomatic gymnasts, and non-gymnasts. Methods Symptomatic gymnasts with clinically suspected distal radial physeal injury, asymptomatic gymnasts, and non-gymnasts (n = 69) were included and matched on skeletal age and sex. Volume measurements were performed on coronal water selective cartilage MRI images by creating three-dimensional physeal reconstructions semi-automatically using active-contour segmentation based on image-intensity thresholding. Inter- and intra-rater reliability of the measurements were assessed using intra-class correlation coefficients (ICC) for absolute agreement. Results Twenty-seven symptomatic-, 18 asymptomatic-, and 24 non-gymnasts were included with a median age of 13.9 years (interquartile range (IQR) 13.0–15.0 years). Median physeal volume was significantly increased (p < 0.05) in symptomatic- (971 mm3, IQR 787–1237 mm3) and asymptomatic gymnasts (951 mm3, IQR 871–1004 mm3) compared with non-gymnasts (646 mm3, IQR 538–795 mm3). Inter-rater (ICC 0.96, 95% CI 0.92–0.98) and intra-rater (ICC 0.93, 95% CI 0.85–0.97) reliability of volume measurements were excellent. Of the 10 participants with the highest physeal volumes, nine were symptomatic gymnasts. Conclusion Increased volume of the distal radial physis can reliably be assessed and is a sign of physeal stress that can be present in both symptomatic- and asymptomatic gymnasts, but gymnasts with suspected physeal injury showed larger volume increases. Future studies should explore if volume assessment can be used to (early) identify athletes with or at risk for physeal stress injuries of the wrist. Key Points • The volume of the distal radial physis can be reliably assessed by creating three-dimensional physeal reconstructions. • Stress-related volume increase of the distal radial physis is present in symptomatic and asymptomatic gymnasts. • Gymnasts with clinically suspected physeal injury showed larger volume increases compared with asymptomatic gymnasts and may therefore be a valuable addition in the (early) diagnostic workup of physeal stress injuries.
Collapse
Affiliation(s)
- Rik B J Kraan
- Amsterdam University Medical Center, Department of Radiology & Nuclear Medicine, Amsterdam Movement Sciences, University of Amsterdam, G1-229, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands. .,Academic Center for Evidence based Sports medicine (ACES), Amsterdam, The Netherlands. .,Amsterdam Collaboration for Health and Safety in Sports (ACHSS), International Olympic Committee (IOC) Research Center AMC/VUmc, Amsterdam, The Netherlands.
| | - Laura S Kox
- Amsterdam University Medical Center, Department of Radiology & Nuclear Medicine, Amsterdam Movement Sciences, University of Amsterdam, G1-229, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.,Academic Center for Evidence based Sports medicine (ACES), Amsterdam, The Netherlands.,Amsterdam Collaboration for Health and Safety in Sports (ACHSS), International Olympic Committee (IOC) Research Center AMC/VUmc, Amsterdam, The Netherlands
| | - Marieke A Mens
- Amsterdam University Medical Center, Department of Radiology & Nuclear Medicine, Amsterdam Movement Sciences, University of Amsterdam, G1-229, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - P Paul F M Kuijer
- Coronel Institute of Occupational Health, Amsterdam Public Health Research Institute, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - Mario Maas
- Amsterdam University Medical Center, Department of Radiology & Nuclear Medicine, Amsterdam Movement Sciences, University of Amsterdam, G1-229, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.,Academic Center for Evidence based Sports medicine (ACES), Amsterdam, The Netherlands.,Amsterdam Collaboration for Health and Safety in Sports (ACHSS), International Olympic Committee (IOC) Research Center AMC/VUmc, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Colombo A, Stephens NB, Tsegai ZJ, Bettuzzi M, Morigi MP, Belcastro MG, Hublin JJ. Trabecular Analysis of the Distal Radial Metaphysis during the Acquisition of Crawling and Bipedal Walking in Childhood: A Preliminary Study. ACTA ACUST UNITED AC 2019. [DOI: 10.3166/bmsap-2018-0041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In modern day populations, children following a normal pattern of development acquire independent bipedal locomotion between the ages of 9 and 18 months. Variability in the timing of this psychomotor developmental milestone depends on various factors, including cultural influences. It is well known that trabecular bone adapts to changes in biomechanical loading and that this can be influenced by alternative locomotor modes, such as crawling, which may be adopted before the acquisition of bipedal locomotion. With the onset of crawling, increased loading of the distal metaphysis of the radius, a component of the wrist, may lead to changes in trabecular bone architecture. To test this hypothesis, eight distal metaphyses of the radius of nonpathological children aged 0 to 3 years from the Bologna collection of identified skeletons were μCT-scanned at a resolution of 10.7 μm. The microarchitectural parameters of the trabecular bone (trabecular bone volume fraction, trabecular thickness, trabecular spacing, and trabecular ellipsoid factor) were quantified for the entire metaphysis and 3D morphometric maps of the distribution of the bone volume fraction were generated. Analysis of these microarchitectural parameters and the 3D morphometric maps show changes in the trabecular bone structure between 6 and 15 months, the period during which both crawling and bipedalism are acquired. This preliminary study analyzed the trabecular structure of the growing radius in three dimensions for the first time, and suggests that ontogenetic changes in the trabecular structure of the radial metaphysis may be related to changes in the biomechanical loading of the wrist during early locomotor transitions, i.e. the onset of crawling. Moreover, microarchitectural analysis could supply important information on the developmental timing of locomotor transitions, which would facilitate interpretations of locomotor development in past populations.
Collapse
|
16
|
Muratoğlu Şahin N, Uğraş Dikmen A, Çetinkaya S, Aycan Z. Subnormal Growth Velocity and Related Factors During GnRH Analog Therapy for Idiopathic Central Precocious Puberty. J Clin Res Pediatr Endocrinol 2018; 10:239-246. [PMID: 29687783 PMCID: PMC6083469 DOI: 10.4274/jcrpe.0023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
OBJECTIVE Data concerning subnormal growth velocity (GV) and factors that influence this during gonadotropin-releasing hormone analog (GnRHa) therapy for idiopathic central precocious puberty (ICPP) are scarce. We investigated the incidence of subnormal GV and associated factors in patients receiving GnRHa therapy for ICPP. METHODS In this retrospective cohort study, the records of 50 girls who had been diagnosed with ICPP and started on GnRHa treatment before the age of eight years were investigated. Subnormal GV frequency, related factors during GnRHa therapy and the effect on final height were examined. RESULTS During the treatment, a significant decrease in the annual GV and GV standard deviation score (SDS) of the patients was observed. In 16 (32%) patients GV never declined below -1 SDS, while a decline was noted once and twice in 19 (38%) and 15 (30%) patients respectively. The median age of detection of subnormal GV was 9.9 (4.9-10.9) years. Patients with pubic hair at diagnosis were found to have an increased risk of subnormal GV (p=0.016). There was a significant negative correlation between diagnostic basal luteinizing hormone (LH) level and the first and second year GV SDS (p=0.012 and 0.017 respectively). A significant negative correlation between bone age at diagnosis and 3rd year GV SDS, and 4th year GV SDS (p=0.002 and p=0.038) was also observed. LH suppression significantly increased during treatment (p=0.001). CONCLUSION In girls with ICPP the risk of subnormal GV appears highest at the 3rd year of GnRHa treatment, particularly in those patients with, at the time of diagnosis, pubic hair in conjunction with high baseline and peak LH and advanced BA and excessive LH suppression on follow-up.
Collapse
Affiliation(s)
- Nursel Muratoğlu Şahin
- University of Health Sciences, Dr. Sami Ulus Obstetrics and Gynecology, Pediatric Health and Disease Training and Research Hospital, Clinic of Pediatric Endocrinology, Ankara, Turkey,* Address for Correspondence: University of Health Sciences, Dr. Sami Ulus Obstetrics and Gynecology, Pediatric Health and Disease Training and Research Hospital, Clinic of Pediatric Endocrinology, Ankara, Turkey Phone: +90 312 305 65 15 E-mail:
| | - Asiye Uğraş Dikmen
- Gazi University Faculty of Medicine, Department of Public Health, Ankara, Turkey
| | - Semra Çetinkaya
- University of Health Sciences, Dr. Sami Ulus Obstetrics and Gynecology, Pediatric Health and Disease Training and Research Hospital, Clinic of Pediatric Endocrinology, Ankara, Turkey
| | - Zehra Aycan
- University of Health Sciences, Dr. Sami Ulus Obstetrics and Gynecology, Pediatric Health and Disease Training and Research Hospital, Clinic of Pediatric Endocrinology, Ankara, Turkey
| |
Collapse
|
17
|
Nguyen JC, Markhardt BK, Merrow AC, Dwek JR. Imaging of Pediatric Growth Plate Disturbances. Radiographics 2018; 37:1791-1812. [PMID: 29019753 DOI: 10.1148/rg.2017170029] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The growth plates, or physes, are visible on virtually all images obtained in skeletally immature children. The proper function of these growth plates depends on an intricate balance between chondrocyte proliferation, which requires nourishment from the epiphyseal vessels, and chondrocyte death, which requires the integrity of the metaphyseal vessels. Therefore, injury to the growth plate (ie, direct insult) or vascular compromise on either side of the growth plate (ie, indirect insult) can cause growth plate dysfunction. Direct growth plate insults occur most commonly with Salter-Harris fractures, and injuries that allow the transphyseal communication of vessels are at a higher risk for subsequent transphyseal bone bridge formation. Indirect insults lead to different sequelae that are based on whether the epiphyseal blood supply or metaphyseal blood supply is compromised. Epiphyseal osteonecrosis can result in slowed longitudinal bone growth, with possible growth plate closure, and is often accompanied by an abnormal secondary ossification center. In contrast, the disruption of metaphyseal blood supply alters endochondral ossification and allows the persistence of chondrocytes within the metaphysis, which appear as focal or diffuse growth plate widening. Imaging remains critical for detecting acute injuries and identifying subsequent growth disturbances. Depending on the imaging findings and patient factors, these growth disturbances may be amenable to conservative or surgical treatment. Therefore, an understanding of the anatomy and physiologic features of the normal growth plate and the associated pathophysiologic conditions can increase diagnostic accuracy, enable radiologists to anticipate future growth disturbances, and ensure optimal imaging, with the ultimate goal of timely and appropriate intervention. ©RSNA, 2017.
Collapse
Affiliation(s)
- Jie C Nguyen
- From the Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wis (J.C.N., B.K.M.); Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio (A.C.M.); and Department of Radiology, University of California at San Diego, Rady Children's Hospital and Health Center, San Diego, Calif (J.R.D.)
| | - B Keegan Markhardt
- From the Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wis (J.C.N., B.K.M.); Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio (A.C.M.); and Department of Radiology, University of California at San Diego, Rady Children's Hospital and Health Center, San Diego, Calif (J.R.D.)
| | - Arnold C Merrow
- From the Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wis (J.C.N., B.K.M.); Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio (A.C.M.); and Department of Radiology, University of California at San Diego, Rady Children's Hospital and Health Center, San Diego, Calif (J.R.D.)
| | - Jerry R Dwek
- From the Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wis (J.C.N., B.K.M.); Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio (A.C.M.); and Department of Radiology, University of California at San Diego, Rady Children's Hospital and Health Center, San Diego, Calif (J.R.D.)
| |
Collapse
|
18
|
Colombo A, Hoogland M, Coqueugniot H, Dutour O, Waters-Rist A. Trabecular bone microarchitecture analysis, a way for an early detection of genetic dwarfism? Case study of a dwarf mother's offspring. INTERNATIONAL JOURNAL OF PALEOPATHOLOGY 2018; 20:65-71. [PMID: 29496218 DOI: 10.1016/j.ijpp.2017.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/24/2017] [Accepted: 12/07/2017] [Indexed: 06/08/2023]
Abstract
A 66 year-old woman with a disproportionate dwarfism and who bore seven children was discovered at the Middenbeemster archaeological site (The Netherlands). Three are perinates and show no macroscopic or radiological evidence for a FGFR3 mutation causing hypo-or achondroplasia. This mutation induces dysfunction of the growth cartilage, leading to abnormalities in the development of trabecular bone. Because the mutation is autosomal dominant, these perinates have a 50% risk of having been affected. This study determines whether trabecular bone microarchitecture (TBMA) analysis is useful for detecting genetic dwarfism. Proximal metaphyses of humeri were μCT-scanned with a resolution of 7-12 μm. Three volumes of interest were segmented from each bone with TIVMI© software. The TBMA was quantified in BoneJ© using six parameters on which a multivariate analysis was then performed. Two of the Middenbeemster perinates show a quantitatively different TBMA organization. These results and the family's medical history suggest a diagnosis of genetic dwarfism for this two perinates. This study provides evidence to support the efficacy of μCT for diagnosing early-stage bone disease.
Collapse
Affiliation(s)
- Antony Colombo
- École Pratique des Hautes Etudes, PSL Research University Paris, Chaire d'anthropologie biologique Paul Broca, France; UMR 5199 PACEA, University of Bordeaux, CNRS, MCC, LabEx Sciences archéologiques de Bordeaux, n°ANR-10-LABX-52, bât B8, allée Geoffroy Saint Hilaire, CS50023, F-33615 Pessac, France; Max Planck Institute for Evolutionary Anthropology, Department of Human Evolution, Deutscher Platz 6, D-04103 Leipzig, Germany.
| | - Menno Hoogland
- The University of Western Ontario, Department of Anthropology, N6A-3K7, London, Canada
| | - Hélène Coqueugniot
- École Pratique des Hautes Etudes, PSL Research University Paris, Chaire d'anthropologie biologique Paul Broca, France; UMR 5199 PACEA, University of Bordeaux, CNRS, MCC, LabEx Sciences archéologiques de Bordeaux, n°ANR-10-LABX-52, bât B8, allée Geoffroy Saint Hilaire, CS50023, F-33615 Pessac, France; Max Planck Institute for Evolutionary Anthropology, Department of Human Evolution, Deutscher Platz 6, D-04103 Leipzig, Germany
| | - Olivier Dutour
- École Pratique des Hautes Etudes, PSL Research University Paris, Chaire d'anthropologie biologique Paul Broca, France; UMR 5199 PACEA, University of Bordeaux, CNRS, MCC, LabEx Sciences archéologiques de Bordeaux, n°ANR-10-LABX-52, bât B8, allée Geoffroy Saint Hilaire, CS50023, F-33615 Pessac, France; The University of Western Ontario, Department of Anthropology, N6A-3K7, London, Canada
| | - Andrea Waters-Rist
- The University of Western Ontario, Department of Anthropology, N6A-3K7, London, Canada; Leiden University, Faculty of Archaeology, Laboratory for Human Osteoarchaeology, Postbus 9514, 2300RA, Leiden, The Netherlands
| |
Collapse
|
19
|
Li X, Shi S, Chen J, Zhong G, Li X, Liu Z. Leptin differentially regulates endochondral ossification in tibial and vertebral epiphyseal plates. Cell Biol Int 2017; 42:169-179. [PMID: 28980745 DOI: 10.1002/cbin.10882] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 09/30/2017] [Indexed: 11/11/2022]
Abstract
Longitudinal bone growth is governed by a complex network of endocrine signals including leptin. In mouse, leptin deficiency leads to distinct phenotypes in bones of the limb and spine, suggesting the appendicular and axial skeletons are subject to differential regulation by leptin. We established primary cultures for the chondrocytes from tibial and vertebral epiphyseal plates. Cellular proliferation and apoptosis were analyzed for the chondrocytes that had been treated with various concentrations of leptin. Crucial factors for chondrocyte proliferation and differentiation, such as BMP7 and Wnt3, were measured in the cells treated with leptin alone or in combination with pharmacological inhibitors of STAT and ERK signaling pathways. Primary culture of tibial epiphyseal plate chondrocytes has greater proliferating capability compared with that of vertebral epiphyseal plate chondrocytes. Leptin could promote the proliferation of tibial epiphyseal plate chondrocytes, while its effect on vertebral epiphyseal plate chondrocytes was inhibitory. Consistently, apoptosis is inhibited in tibial but promoted in vertebral epiphyseal plate chondrocytes by leptin. Importantly, leptin differentially modulates chondrogenic signaling pathways in tibial and vertebral epiphyseal chondrocytes through STAT and ERK pathways. Leptin differentially regulates chondrogenic proliferation and differentiation in appendicular and axial regions of the skeletons. The signaling pathways in these two regions are also distinct and subject to differential regulation by leptin through the STAT pathway in tibial epiphyseal plate chondrocytes but through the ERK pathway in vertebral epiphyseal plate chondrocytes. Therefore, the regulation of leptin is multi-faceted in the distinct anatomical regions of the skeleton. Knowledge gained from this system will provide insights into the pathophysiological causes for the diseases related to bone development and metabolism.
Collapse
Affiliation(s)
- Xiaomiao Li
- Department of Orthopaedic, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pujian Road, Shanghai, 200127, China
| | - Sheng Shi
- Department of Orthopaedic, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pujian Road, Shanghai, 200127, China
| | - Jianwei Chen
- Department of Orthopaedic, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pujian Road, Shanghai, 200127, China
| | - Guibin Zhong
- Department of Orthopaedic, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pujian Road, Shanghai, 200127, China
| | - Xinfeng Li
- Department of Orthopaedic, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pujian Road, Shanghai, 200127, China
| | - Zude Liu
- Department of Orthopaedic, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pujian Road, Shanghai, 200127, China
| |
Collapse
|
20
|
Yu B, Jiang K, Chen B, Wang H, Li X, Liu Z. Leptin differentially regulates chondrogenesis in mouse vertebral and tibial growth plates. BMC Musculoskelet Disord 2017; 18:235. [PMID: 28569158 PMCID: PMC5452289 DOI: 10.1186/s12891-017-1601-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 05/22/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Leptin plays an important role in mediating chondrogenesis of limb growth plate. Previous studies suggest that bone structures and development of spine and limb are different. The expression of Ob-Rb, the gene that encodes leptin receptors, is vertebral and appendicular region-specific, suggesting the regulation of leptin on VGP and TGP chondrogenesis may be very different. The aim of the present study was to investigate the differential regulation of leptin on the chondrogenesis of vertebral growth plate (VGP) and tibial growth plate (TGP). METHODS We compared the VGP and TGP from wild type (C57BL/6) and leptin-deficient (ob/ob) mice. We then generated primary cultures of TGP and VGP chondrocytes. By treating the primary cells with different concentrations of leptin in vitro, we analyzed proliferation and apoptosis of the primary chondrocytes from TGP and VGP. We further measured expression of chondrogenic-related genes in these cells that had been incubated with different doses of leptin. RESULTS Leptin-deficient mice of 8-week-old had shorter tibial and longer vertebral lengths than the wide type mice. Disturbed columnar structure was observed for TGP but not for VGP. In primary chondrocyte cultures, leptin inhibited VGP chondrocyte proliferation but promoted their apoptosis. Collagen IIA and aggrecan mRNA, and the protein levels of proliferation- and chondrogenesis-related markers, including PCNA, Sox9, and Smad4, were downregulated by leptin in a dose-dependent manner. In contrast, leptin stimulated the proliferation and chondrogenic differentiation of TGP chondrocytes at physiological levels (i.e., 10 and 50 ng/mL) but not at high levels (i.e., 100 and 1000 ng/mL). CONCLUSION Leptin exerts a stimulatory effect on the proliferation and chondrogenic differentiation of the long bone growth plate but an inhibitory effect on the spine growth plate. The ongoing study will shed light on the regulatory mechanisms of leptin in bone development and metabolism.
Collapse
Affiliation(s)
- Bo Yu
- Department of Spine Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Kaibiao Jiang
- Department of Spine Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Bin Chen
- Department of Spine Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Hantao Wang
- Department of Spine Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Xinfeng Li
- Department of Spine Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Zude Liu
- Department of Spine Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Rd, Shanghai, 200127, China.
| |
Collapse
|
21
|
Mailhot G, Dion N, Farlay D, Rizzo S, Bureau NJ, Jomphe V, Sankhe S, Boivin G, Lands LC, Ferraro P, Ste-Marie LG. Impaired rib bone mass and quality in end-stage cystic fibrosis patients. Bone 2017; 98:9-17. [PMID: 28254466 DOI: 10.1016/j.bone.2017.02.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/13/2017] [Accepted: 02/20/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND Advancements in research and clinical care have considerably extended the life expectancy of cystic fibrosis (CF) patients. However, with this extended survival come comorbidities. One of the leading co-morbidities is CF-related bone disease (CFBD), which progresses with disease severity and places patients at high risk for fractures, particularly of the ribs and vertebrae. Evidence that CF patients with vertebral fractures had higher bone mineral density (BMD) than the nonfracture group led us to postulate that bone quality is impaired in these patients. We therefore examined rib specimens resected at the time of lung transplant in CF patients to measure parameters of bone quantity and quality. METHODS In this exploratory study, we analysed 19 end-stage CF and 13 control rib specimens resected from otherwise healthy lung donors. BMD, bone microarchitecture, static parameters of bone formation and resorption and microcrack density of rib specimens were quantified by imaging, histomorphometric and histological methods. Variables reflecting the mineralization of ribs were assessed by digitized microradiography. The degree of bone mineralization (g/cm3) and the heterogeneity index of the mineralization (g/cm3) were calculated for trabecular and cortical bone. RESULTS Compared to controls, CF ribs exhibited lower areal and trabecular volumetric BMD, decreased trabecular thickness and osteoid parameters, and increased microcrack density, that was particularly pronounced in specimens from patients with CF-related diabetes. Static parameters of bone resorption were similar in both groups. Degree of mineralization of total bone, but not heterogeneity index, was increased in CF specimens. CONCLUSION The combination of reduced bone mass, altered microarchitecture, imbalanced bone remodeling (maintained bone resorption but decreased formation), increased microdamage and a small increase of the degree of mineralization, may lead to decreased bone strength, which, when coupled with chronic coughing and chest physical therapy, may provide an explanation for the increased incidence of rib fractures previously reported in this population.
Collapse
Affiliation(s)
- Geneviève Mailhot
- Research Centre, CHU Sainte-Justine, 3175 Cote Sainte-Catherine Rd, Montreal, Québec H3T 1C5, Canada; Department of Nutrition, Faculty of Medicine, Université de Montreal, 2405 Cote Sainte-Catherine Rd, Montreal, Québec H3T 1A8, Canada.
| | - Natalie Dion
- Department of Pathology, Centre Hospitalier de l'Université de Montréal, 1058 St-Denis Street, Montreal, Québec H2X 3J4, Canada.
| | - Delphine Farlay
- INSERM, UMR 1033, Univ Lyon, Université Claude Bernard Lyon 1, F69008 Lyon, France.
| | - Sébastien Rizzo
- INSERM, UMR 1033, Univ Lyon, Université Claude Bernard Lyon 1, F69008 Lyon, France.
| | - Nathalie J Bureau
- Research Center, Centre Hospitalier de l'Université de Montréal, 1058 St-Denis Street, Montreal, Québec H2X 3J4, Canada; Department of Radiology, Faculty of Medicine, Université de Montreal, 2900, Boulevard Édouard-Montpetit, Montréal, Québec H3T 1J4, Canada.
| | - Valérie Jomphe
- Lung transplant Program, Centre Hospitalier de l'Université de Montréal, 1560 Sherbrooke East Street, Montreal, Québec H2L 4M1, Canada.
| | - Safiétou Sankhe
- Research Centre, CHU Sainte-Justine, 3175 Cote Sainte-Catherine Rd, Montreal, Québec H3T 1C5, Canada.
| | - Georges Boivin
- INSERM, UMR 1033, Univ Lyon, Université Claude Bernard Lyon 1, F69008 Lyon, France.
| | - Larry C Lands
- Department of Pediatrics, Montreal Children's Hospital-McGill University Health Centre, Meakins Christie Laboratories, Research Institute of the McGill University Health Centre, 1001 Décarie Boulevard, Montreal, Québec H4A 3J1, Canada; Respiratory Medicine, Centre Hospitalier de l'Universite de Montreal, 1560 Sherbrooke East Street, Montreal, Québec H2L 4M1, Canada.
| | - Pasquale Ferraro
- Research Center, Centre Hospitalier de l'Université de Montréal, 1058 St-Denis Street, Montreal, Québec H2X 3J4, Canada; Lung transplant Program, Centre Hospitalier de l'Université de Montréal, 1560 Sherbrooke East Street, Montreal, Québec H2L 4M1, Canada; Division of Thoracic Surgery, Department of Surgery, Centre Hospitalier de l'Université de Montréal, 1058 St-Denis Street, Montreal, Québec H2X 3J4, Canada.
| | - Louis-Georges Ste-Marie
- Department of Medicine, Centre Hospitalier de l'Université de Montréal, 1058 St-Denis Street, Montreal, Québec H2X 3J4, Canada.
| |
Collapse
|
22
|
Ramcharan MA, Faillace ME, Guengerich Z, Williams VA, Jepsen KJ. The development of inter-strain variation in cortical and trabecular traits during growth of the mouse lumbar vertebral body. Osteoporos Int 2017; 28:1133-1143. [PMID: 27734101 PMCID: PMC5890929 DOI: 10.1007/s00198-016-3801-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 09/29/2016] [Indexed: 12/21/2022]
Abstract
How cortical and trabecular bone co-develop to establish a mechanically functional structure is not well understood. Comparing early postnatal differences in morphology of lumbar vertebral bodies for three inbred mouse strains identified coordinated changes within and between cortical and trabecular traits. These early coordinate changes defined the phenotypic differences among the inbred mouse strains. INTRODUCTION Age-related changes in cortical and trabecular traits have been well studied; however, very little is known about how these bone tissues co-develop from day 1 of postnatal growth to establish functional structures by adulthood. In this study, we aimed to establish how cortical and trabecular tissues within the lumbar vertebral body change during growth for three inbred mouse strains that express wide variation in adult bone structure and function. METHODS Bone traits were quantified for lumbar vertebral bodies of female A/J, C57BL/6J (B6), and C3H/HeJ (C3H) inbred mouse strains from 1 to 105 days of age (n = 6-10 mice/age/strain). RESULTS Inter-strain differences in external bone size were observed as early as 1 day of age. Reciprocal and rapid changes in the trabecular bone volume fraction and alignment in the direction of axial compression were observed by 7 days of age. Importantly, the inter-strain difference in adult trabecular bone volume fraction was established by 7 days of age. Early variation in external bone size and trabecular architecture was followed by progressive increases in cortical area between 28 and 105 days of age, with the greatest increases in cortical area seen in the mouse strain with the lowest trabecular mass. CONCLUSION Establishing the temporal changes in bone morphology for three inbred mouse strains revealed that genetic variation in adult trabecular traits were established early in postnatal development. Early variation in trabecular architecture preceded strain-specific increases in cortical area and changes in cortical thickness. This study established the sequence of how cortical and trabecular traits co-develop during growth, which is important for identifying critical early ages to further focus on intervention studies that optimize adult bone strength.
Collapse
Affiliation(s)
- M A Ramcharan
- Department of Biomedical Engineering, The City College of New York c/o CUNY Graduate Center, New York, NY, USA
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Orthopaedic Surgery, University of Michigan, 109 Zina Pitcher Place, Room 2001, Ann Arbor, MI, 48109-2200, USA
| | - M E Faillace
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Z Guengerich
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - V A Williams
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - K J Jepsen
- Department of Orthopaedic Surgery, University of Michigan, 109 Zina Pitcher Place, Room 2001, Ann Arbor, MI, 48109-2200, USA.
| |
Collapse
|
23
|
Unique local bone tissue characteristics in iliac crest bone biopsy from adolescent idiopathic scoliosis with severe spinal deformity. Sci Rep 2017; 7:40265. [PMID: 28054655 PMCID: PMC5214167 DOI: 10.1038/srep40265] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 12/05/2016] [Indexed: 01/11/2023] Open
Abstract
Adolescent idiopathic scoliosis is a complex disease with unclear etiopathogenesis. Systemic and persistent low bone mineral density is an independent prognostic factor for curve progression. The fundamental question of how bone quality is affected in AIS remains controversy because there is lack of site-matched control for detailed analysis on bone-related parameters. In this case-control study, trabecular bone biopsies from iliac crest were collected intra-operatively from 28 severe AIS patients and 10 matched controls with similar skeletal and sexual maturity, anthropometry and femoral neck BMD Z-score to control confounding effects. In addition to static histomorphometry, micro-computed tomography (μCT) and real time-PCR (qPCR) analyses, individual trabecula segmentation (ITS)-based analysis, finite element analysis (FEA), energy dispersive X-ray spectroscopy (EDX) were conducted to provide advanced analysis of structural, mechanical and mineralization features. μCT and histomorphometry showed consistently reduced trabecular number and connectivity. ITS revealed predominant change in trabecular rods, and EDX confirmed less mineralization. The structural and mineralization abnormality led to slight reduction in apparent modulus, which could be attributed to differential down-regulation of Runx2, and up-regulation of Spp1 and TRAP. In conclusion, this is the first comprehensive study providing direct evidence of undefined unique pathological changes at different bone hierarchical levels in AIS.
Collapse
|
24
|
Alsina E, Macri EV, Lifshitz F, Bozzini C, Rodriguez PN, Boyer PM, Friedman SM. Efficacy of phytosterols and fish-oil supplemented high-oleic-sunflower oil rich diets in hypercholesterolemic growing rats. Int J Food Sci Nutr 2016; 67:441-53. [PMID: 26983467 DOI: 10.3109/09637486.2016.1161010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Phytosterols (P) and fish-oil (F) efficacy on high-oleic-sunflower oil (HOSO) diets were assessed in hypercholesterolemic growing rats. Controls (C) received a standard diet for 8 weeks; experimental rats were fed an atherogenic diet (AT) for 3 weeks, thereafter were divided into four groups fed for 5 weeks a monounsaturated fatty acid diet (MUFA) containing either: extra virgin olive oil (OO), HOSO or HOSO supplemented with P or F. The diets did not alter body weight or growth. HOSO-P and HOSO-F rats showed reduced total cholesterol (T-chol), non-high-density lipoprotein-cholesterol (non-HDL-chol) and triglycerides and increased HDL-chol levels, comparably to the OO rats. Total body fat (%) was similar among all rats; but HOSO-F showed the lowest intestinal, epididymal and perirenal fat. However, bone mineral content and density, and bone yield stress and modulus of elasticity were unchanged. Growing hypercholesterolemic rats fed HOSO with P or F improved serum lipids and fat distribution, but did not influence material bone quality.
Collapse
Affiliation(s)
- Estefania Alsina
- a Department of Biochemistry, School of Dentistry , University of Buenos Aires , Buenos Aires , Argentina
| | - Elisa V Macri
- a Department of Biochemistry, School of Dentistry , University of Buenos Aires , Buenos Aires , Argentina
| | - Fima Lifshitz
- b Pediatric Sunshine Academics Inc , Santa Barbara , CA , USA
| | - Clarisa Bozzini
- c Department of Physiology, School of Dentistry , University of Buenos Aires , Buenos Aires , Argentina
| | - Patricia N Rodriguez
- a Department of Biochemistry, School of Dentistry , University of Buenos Aires , Buenos Aires , Argentina
| | - Patricia M Boyer
- c Department of Physiology, School of Dentistry , University of Buenos Aires , Buenos Aires , Argentina
| | - Silvia M Friedman
- d Department of General and Oral Biochemistry, School of Dentistry , University of Buenos Aires , Buenos Aires , Argentina
| |
Collapse
|
25
|
Liu D, Li X, Li J, Yang J, Yokota H, Zhang P. Knee loading protects against osteonecrosis of the femoral head by enhancing vessel remodeling and bone healing. Bone 2015; 81:620-631. [PMID: 26416150 PMCID: PMC4641018 DOI: 10.1016/j.bone.2015.09.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 08/27/2015] [Accepted: 09/24/2015] [Indexed: 01/13/2023]
Abstract
Osteonecrosis of the femoral head is a serious orthopedic problem. Moderate loads with knee loading promote bone formation, but their effects on osteonecrosis have not been investigated. Using a rat model, we examined a hypothesis that knee loading enhances vessel remodeling and bone healing through the modulation of the fate of bone marrow-derived cells. In this study, osteonecrosis was induced by transecting the ligamentum teres followed by a tight ligature around the femoral neck. For knee loading, 5 N loads were laterally applied to the knee at 15 Hz for 5 min/day for 5 weeks. Changes in bone mineral density (BMD) and bone mineral content (BMC) of the femur were measured by pDEXA, and ink infusion was performed to evaluate vessel remodeling. Femoral heads were harvested for histomorphometry, and bone marrow-derived cells were isolated to examine osteoclast development and osteoblast differentiation. The results showed that osteonecrosis significantly induced bone loss, and knee loading stimulated both vessel remodeling and bone healing. The osteonecrosis group exhibited the lowest trabecular BV/TV (p b 0.001) in the femoral head, and lowest femoral BMD and BMC (both p b 0.01). However, knee loading increased trabecular BV/TV (p b 0.05) as well as BMD (pb 0.05) and BMC (p b 0.01). Osteonecrosis decreased the vessel volume (pb 0.001), vessel number (pb 0.001) and VEGF expression (p b 0.01), and knee loading increased them (pb 0.001, pb 0.001 and p b 0.01). Osteonecrosis activated osteoclast development, and knee loading reduced its formation, migration, adhesion and the level of “pit” formation (pb 0.001, pb 0.01, pb 0.001 and pb 0.001). Furthermore, knee loading significantly increased osteoblast differentiation and CFU-F (both p b 0.001). A significantly positive correlation was observed between vessel remodeling and bone healing (both p b 0.01). These results indicate that knee loading could be effective in repair osteonecrosis of the femoral head in a rat model. This effect might be attributed to promoting vessel remodeling, suppressing osteoclast development, and increasing osteoblast and fibroblast differentiation. In summary, the current study suggests that knee loading might potentially be employed as a non-invasive therapy for osteonecrosis of the femoral head.
Collapse
Affiliation(s)
- Daquan Liu
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; Department of Pharmacology, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin 300100, China
| | - Xinle Li
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jie Li
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jing Yang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, IN 46202, USA
| | - Ping Zhang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, IN 46202, USA.
| |
Collapse
|
26
|
Abstract
Mechanical loads which are macroscopically acting onto bony organs, are known to influence the activities of biological cells located in the pore spaces of bone, in particular so the signaling and production processes mediated by osteocytes. The exact mechanisms by which osteocytes are actually able to “feel” the mechanical loading and changes thereof, has been the subject of numerous studies, and, while several hypotheses have been brought forth over time, this topic has remained a matter of debate. Relaxation times reported in a recent experimental study of Gardinier et al. (Bone 46(4):1075–1081, 2010) strongly suggest that the lacunar pores are likely to experience, during typical physiological load cycles, not only fluid transport, but also undrained conditions. The latter entail the buildup of lacunar pore pressures, which we here quantify by means of a thorough multiscale modeling approach. In particular, the proposed model is based on classical poroelasticity theory, and able to account for multiple pore spaces. First, the model reveals distinct nonlinear dependencies of the resulting lacunar (and vascular) pore pressures on the underlying bone composition, highlighting the importance of a rigorous multiscale approach for appropriate computation of the aforementioned pore pressures. Then, the derived equations are evaluated for macroscopic (uniaxial as well as hydrostatic) mechanical loading of physiological magnitude. The resulting model-predicted pore pressures agree very well with the pressures that have been revealed, by means of in vitro studies, to be of adequate magnitude for modulating the responses of biological cells, including osteocytes. This underlines that osteocytes may respond to many types of loading stimuli at the same time, in particular so to fluid flow and hydrostatic pressure.
Collapse
|
27
|
Brimacombe C, Kuykendall K, Nystrom P. Analysis of correlations between measures of skeletal development and dental mineralization inPan troglodytes. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2015; 158:279-287. [DOI: 10.1002/ajpa.22790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 04/28/2015] [Accepted: 05/26/2015] [Indexed: 11/10/2022]
Affiliation(s)
- C.S. Brimacombe
- Department of Archaeology; University of Sheffield; Sheffield South Yorkshire S10 2TN UK
- Human Evolutionary Studies Program and Department of Archaeology; Simon Fraser University; Education Building 9635, 8888 University Drive Burnaby BC V5A 1S6 Canada
| | - K.L. Kuykendall
- Department of Archaeology; University of Sheffield; Sheffield South Yorkshire S10 2TN UK
| | - P. Nystrom
- Department of Archaeology; University of Sheffield; Sheffield South Yorkshire S10 2TN UK
| |
Collapse
|
28
|
Macri EV, Lifshitz F, Alsina E, Juiz N, Zago V, Lezón C, Rodriguez PN, Schreier L, Boyer PM, Friedman SM. Monounsaturated fatty acids-rich diets in hypercholesterolemic-growing rats. Int J Food Sci Nutr 2015; 66:400-8. [PMID: 25830945 DOI: 10.3109/09637486.2015.1025719] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The effects of replacing dietary saturated fat by different monounsaturated fatty acid (ω-9MUFA) sources on serum lipids, body fat and bone in growing hypercholesterolemic rats were studied. Rats received one of the six different diets: AIN-93G (control, C); extra virgin olive oil (OO) + C; high-oleic sunflower oil (HOSO) + C or atherogenic diet (AT) for 8 weeks; the remaining two groups received AT for 3 weeks and then, the saturated fat was replaced by an oil mixture of soybean oil added with OO or HOSO for 5 weeks. Rats consuming MUFA-rich diets showed the highest body fat, hepatic index and epididymal, intestinal and perirenal fat, and triglycerides. T-chol and non-HDL-chol were increased in HOSO rats but decreased in OO rats. Bone mineral content and density were higher in both OO and HOSO groups than in AT rats. This study casts caution to the generalization of the benefits of MUFA for the treatment of hypercholesterolemia.
Collapse
Affiliation(s)
- Elisa V Macri
- Department of Biochemistry, School of Dentistry, University of Buenos Aires , Buenos Aires , Argentina
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Guevara JM, Moncayo MA, Vaca-González JJ, Gutiérrez ML, Barrera LA, Garzón-Alvarado DA. Growth plate stress distribution implications during bone development: a simple framework computational approach. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2015; 118:59-68. [PMID: 25453383 DOI: 10.1016/j.cmpb.2014.10.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 09/22/2014] [Accepted: 10/08/2014] [Indexed: 06/04/2023]
Abstract
Mechanical stimuli play a significant role in the process of long bone development as evidenced by clinical observations and in vivo studies. Up to now approaches to understand stimuli characteristics have been limited to the first stages of epiphyseal development. Furthermore, growth plate mechanical behavior has not been widely studied. In order to better understand mechanical influences on bone growth, we used Carter and Wong biomechanical approximation to analyze growth plate mechanical behavior, and explore stress patterns for different morphological stages of the growth plate. To the best of our knowledge this work is the first attempt to study stress distribution on growth plate during different possible stages of bone development, from gestation to adolescence. Stress distribution analysis on the epiphysis and growth plate was performed using axisymmetric (3D) finite element analysis in a simplified generic epiphyseal geometry using a linear elastic model as the first approximation. We took into account different growth plate locations, morphologies and widths, as well as different epiphyseal developmental stages. We found stress distribution during bone development established osteogenic index patterns that seem to influence locally epiphyseal structures growth and coincide with growth plate histological arrangement.
Collapse
Affiliation(s)
- J M Guevara
- Institute for the Study of Inborn Errors of Metabolism, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - M A Moncayo
- Biomimetics Laboratory and Numerical Methods and Modeling Research Group (GNUM), Instituto de Biotecnología (IBUN), Universidad Nacional de Colombia, Bogotá, Colombia
| | - J J Vaca-González
- Biomimetics Laboratory and Numerical Methods and Modeling Research Group (GNUM), Instituto de Biotecnología (IBUN), Universidad Nacional de Colombia, Bogotá, Colombia
| | - M L Gutiérrez
- Biomimetics Laboratory and Numerical Methods and Modeling Research Group (GNUM), Instituto de Biotecnología (IBUN), Universidad Nacional de Colombia, Bogotá, Colombia
| | - L A Barrera
- Institute for the Study of Inborn Errors of Metabolism, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - D A Garzón-Alvarado
- Biomimetics Laboratory and Numerical Methods and Modeling Research Group (GNUM), Instituto de Biotecnología (IBUN), Universidad Nacional de Colombia, Bogotá, Colombia.
| |
Collapse
|
30
|
Acquaah F, Robson Brown KA, Ahmed F, Jeffery N, Abel RL. Early Trabecular Development in Human Vertebrae: Overproduction, Constructive Regression, and Refinement. Front Endocrinol (Lausanne) 2015; 6:67. [PMID: 26106365 PMCID: PMC4458883 DOI: 10.3389/fendo.2015.00067] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/14/2015] [Indexed: 01/18/2023] Open
Abstract
Early bone development may have a significant impact upon bone health in adulthood. Bone mineral density (BMD) and bone mass are important determinants of adult bone strength. However, several studies have shown that BMD and bone mass decrease after birth. If early development is important for strength, why does this reduction occur? To investigate this, more data characterizing gestational, infant, and childhood bone development are needed in order to compare with adults. The aim of this study is to document early vertebral trabecular bone development, a key fragility fracture site, and infer whether this period is important for adult bone mass and structure. A series of 120 vertebrae aged between 6 months gestation and 2.5 years were visualized using microcomputed tomography. Spherical volumes of interest were defined, thresholded, and measured using 3D bone analysis software (BoneJ, Quant3D). The findings showed that gestation was characterized by increasing bone volume fraction whilst infancy was defined by significant bone loss (≈2/3rds) and the appearance of a highly anisotropic trabecular structure with a predominantly inferior-superior direction. Childhood development progressed via selective thickening of some trabeculae and the loss of others; maintaining bone volume whilst creating a more anisotropic structure. Overall, the pattern of vertebral development is one of gestational overproduction followed by infant "sculpting" of bone tissue during the first year of life (perhaps in order to regulate mineral homeostasis or to adapt to loading environment) and then subsequent refinement during early childhood. Comparison of early bone developmental data in this study with adult bone volume values taken from the literature shows that the loss in bone mass that occurs during the first year of life is never fully recovered. Early development could therefore be important for developing bone strength, but through structural changes in trabecular microarchitecture rather than bone mass.
Collapse
Affiliation(s)
- Frank Acquaah
- MSk Laboratory, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
- School of Medicine, King’s College London, London, UK
| | - Katharine A. Robson Brown
- Department of Archaeology and Anthropology, University of Bristol, Bristol, UK
- *Correspondence: Katharine A. Robson Brown, Department of Archaeology and Anthropology, University of Bristol, 43 Woodland Road, Bristol BS8 1UU, UK,
| | - Farah Ahmed
- Department of Mineralogy, The Natural History Museum, London, UK
| | - Nathan Jeffery
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Richard L. Abel
- MSk Laboratory, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
- Department of Mineralogy, The Natural History Museum, London, UK
| |
Collapse
|
31
|
Song HS, Choi WB, Song JS, Hwang IT, Yang S. Relationship between serum insulin-like growth factor-1, IGF binding protein-3 levels and body height before and after gonadotropin-releasing hormone agonist therapy. Ann Pediatr Endocrinol Metab 2014; 19:208-13. [PMID: 25654067 PMCID: PMC4316410 DOI: 10.6065/apem.2014.19.4.208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 10/06/2014] [Accepted: 12/16/2014] [Indexed: 11/20/2022] Open
Abstract
PURPOSE The gonadotropin-releasing hormone agonist (GnRHa) is widely used to treat patients with precocious puberty. However, its effect on growth is often difficult to predict because of the diverse nature of its causes and presentation. This study aims to show the impact of GnRHa treatment on insulin-like growth factor-1 (IGF-I) and IGF binding protein-3 (IGFBP-3) secretion, growth, and on other parameters that may help estimate the height velocity. METHODS Data from 60 girls (mean age, 8.8±0.7 years) treated with GnRHa were analyzed. Their height, bone age (BA), serum IGF-I, and IGFBP-3 concentrations were measured at the start and after a year of GnRHa treatment. To eliminate the confounding effect of chronological age (CA), the standard deviation scores (SDSs) of their height, IGF-I, and IGFBP-3 concentrations according to their CA at the start and after a year of GnRHa treatment were calculated. We looked for possible correlations between these variables and compared the subgroups based on their height velocities and midparental heights. RESULTS During their one-year GnRHa therapy, height SDS for CA significantly decreased to 0.81±0.83 (P<0.001), but height SDS for BA increased to -0.28±0.68 (P<0.001). There was no significant change in serum IGF-I SDS, IGFBP-3 SDS, and IGF-I/IGFBP-3 ratio. The advanced BA was the factor most strongly correlated to the height velocity (R=0.265, P=0.041). CONCLUSION These findings suggest that GnRHa treatment may affect the height velocity due to mechanisms other than suppression of the IGF-I and IGFBP-3 secretory axis.
Collapse
Affiliation(s)
- Han Sol Song
- Department of Pediatrics, Hallym University College of Medicine, Seoul, Korea
| | - Won Bok Choi
- Department of Pediatrics, Hallym University College of Medicine, Seoul, Korea
| | - Joon Sup Song
- Department of Pediatrics, Hallym University College of Medicine, Seoul, Korea
| | - Il Tae Hwang
- Department of Pediatrics, Hallym University College of Medicine, Seoul, Korea
| | - Seung Yang
- Department of Pediatrics, Hallym University College of Medicine, Seoul, Korea
| |
Collapse
|
32
|
Willems NMBK, Langenbach GEJ, Stoop R, den Toonder JMJ, Mulder L, Zentner A, Everts V. Higher number of pentosidine cross-links induced by ribose does not alter tissue stiffness of cancellous bone. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 42:15-21. [PMID: 25063086 DOI: 10.1016/j.msec.2014.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Revised: 04/07/2014] [Accepted: 05/06/2014] [Indexed: 01/22/2023]
Abstract
The role of mature collagen cross-links, pentosidine (Pen) cross-links in particular, in the micromechanical properties of cancellous bone is unknown. The aim of this study was to examine nonenzymatic glycation effects on tissue stiffness of demineralized and non-demineralized cancellous bone. A total of 60 bone samples were derived from mandibular condyles of six pigs, and assigned to either control or experimental groups. Experimental handling included incubation in phosphate buffered saline alone or with 0.2M ribose at 37°C for 15 days and, in some of the samples, subsequent complete demineralization of the sample surface using 8% EDTA. Before and after experimental handling, bone microarchitecture and tissue mineral density were examined by means of microcomputed tomography. After experimental handling, the collagen content and the number of Pen, hydroxylysylpyridinoline (HP), and lysylpyridinoline (LP) cross-links were estimated using HPLC, and tissue stiffness was assessed by means of nanoindentation. Ribose treatment caused an up to 300-fold increase in the number of Pen cross-links compared to nonribose-incubated controls, but did not affect the number of HP and LP cross-links. This increase in the number of Pen cross-links had no influence on tissue stiffness of both demineralized and nondemineralized bone samples. These findings suggest that Pen cross-links do not play a significant role in bone tissue stiffness.
Collapse
Affiliation(s)
- Nop M B K Willems
- Dept. of Orthodontics, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands; Dept. of Oral Cell Biology and Functional Anatomy, MOVE Research Institute, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands.
| | - Geerling E J Langenbach
- Dept. of Oral Cell Biology and Functional Anatomy, MOVE Research Institute, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands
| | - Reinout Stoop
- Dept. of Metabolic Health Research, TNO, P.O. Box 2215, 2301 CE Leiden, The Netherlands
| | - Jaap M J den Toonder
- Dept. of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Lars Mulder
- Dept. of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Andrej Zentner
- Dept. of Orthodontics, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands
| | - Vincent Everts
- Dept. of Oral Cell Biology and Functional Anatomy, MOVE Research Institute, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands
| |
Collapse
|
33
|
Jaimes C, Chauvin NA, Delgado J, Jaramillo D. MR Imaging of Normal Epiphyseal Development and Common Epiphyseal Disorders. Radiographics 2014; 34:449-71. [DOI: 10.1148/rg.342135070] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
34
|
A critical review of the classic metaphyseal lesion: traumatic or metabolic? AJR Am J Roentgenol 2014; 202:185-96. [PMID: 24370143 DOI: 10.2214/ajr.13.10540] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE The purpose of this study was to review the hypothesis that classic metaphyseal lesions represent traumatic changes in abused infants and compare these lesions with healing rickets. MATERIALS AND METHODS Using a PubMed search, a multidisciplinary team reviewed studies that reported the histopathologic correlation of classic metaphyseal lesions. Selective studies of growth plate injury and rickets were cross-referenced. RESULTS Nine identified classic metaphyseal lesion studies were performed by the same principal investigator. Control subjects were inadequate. Details of abuse determination and metabolic bone disease exclusion were lacking. The presence of only a single radiology reviewer prevented establishment of interobserver variability. Microscopy was performed by two researchers who were not pathologists. Classic metaphyseal lesions have not been experimentally reproduced and are unrecognized in the accidental trauma literature. The proposed primary spongiosa location is inconsistent with the variable radiographic appearances. Classic metaphyseal lesions were not differentiated from tissue processing artifacts. Bleeding and callus were uncommon in spite of the vascular nature of the metaphysis. The conclusion that excessive hypertrophic chondrocytes secondary to vascular disruption were indicative of fracture healing contradicts the paucity of bleeding, callus, and periosteal reaction. Several similarities exist between classic metaphyseal lesions and healing rickets, including excessive hypertrophic chondrocytes. "Bucket-handle" and "corner fracture" classic metaphyseal lesions resemble healing rickets within the growth plate and the perichondrial ring, respectively. The age of presentation was more typical of bone fragility disorders, including rickets, than reported in prior child abuse series. CONCLUSION The hypothesis that classic metaphyseal lesions are secondary to child abuse is poorly supported. Their histologic and radiographic features are similar to healing infantile rickets. Until classic metaphyseal lesions are experimentally replicated and independently validated, their traumatic origin remains unsubstantiated.
Collapse
|
35
|
Sinclair KD, Farnsworth RW, Pham TX, Knight AN, Bloebaum RD, Skedros JG. The artiodactyl calcaneus as a potential ‘control bone’ cautions against simple interpretations of trabecular bone adaptation in the anthropoid femoral neck. J Hum Evol 2013; 64:366-79. [DOI: 10.1016/j.jhevol.2013.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 12/08/2012] [Accepted: 01/09/2013] [Indexed: 10/27/2022]
|
36
|
Gottliebsen M, Rahbek O, Poulsen HD, Møller-Madsen B. Similar growth plate morphology in stapling and tension band plating hemiepiphysiodesis: a porcine experimental histomorphometric study. J Orthop Res 2013. [PMID: 23192490 DOI: 10.1002/jor.22276] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The tension band plating technique for hemiepiphysiodesis is new and advocated because it is believed to reduce the risk of premature closure of the growth plate compared to stapling. The benefit of the tension band plating technique has not yet been proven in experimental or randomized clinical studies. Ten weeks old domestic pigs in two randomized, paired studies were used. Right proximal tibia was randomized to medial epiphysiodesis by either stapling or tension band plating. Left side received the opposite treatment. Study A (n = 10): 9 weeks treatment. Study B (n = 8): implant removal after 9 weeks of treatment and 5 weeks of housing. Fractions of the chondrocyte layers were determined using quantitative histomorphometry. Mean heights of the growth plates were measured. No significant changes were observed between histomorphometric parameters in neither study A or B. Areas with disorganized cartilage tissue were abundant in 13/16 samples from study B and observed after both treatment with tension band plating and staples. Chondrocyte zone fractions did not differ between tension band plating and staple treatment in this randomized, paired animal study. The growth plate responded to release of hemiepiphysiodesis with abundant disorganized cartilage tissue in both groups. The histological response to hemiepiphysiodesis by tension band plating and staples appear to be similar.
Collapse
Affiliation(s)
- Martin Gottliebsen
- Department of Children's Orthopaedics, Aarhus University Hospital, Nørrebrogade 44, Aarhus C 8000, Denmark.
| | | | | | | |
Collapse
|
37
|
Characterisation of Trabecular Bone Structure. STUDIES IN MECHANOBIOLOGY, TISSUE ENGINEERING AND BIOMATERIALS 2013. [DOI: 10.1007/8415_2011_113] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
38
|
Macsai CE, Derrick-Roberts ALK, Ding X, Zarrinkalam KH, McIntyre C, Anderson PH, Anson DS, Byers S. Skeletal response to lentiviral mediated gene therapy in a mouse model of MPS VII. Mol Genet Metab 2012; 106:202-13. [PMID: 22525091 DOI: 10.1016/j.ymgme.2012.03.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 03/30/2012] [Accepted: 03/30/2012] [Indexed: 12/01/2022]
Abstract
Mucopolysaccharidosis VII (MPS VII) is an autosomal recessive, lysosomal storage disorder caused by β-glucuronidase (GUSB) deficiency, resulting in the accumulation of glycosaminoglycans (GAGs), in a variety of cell types. Severe, progressive skeletal pathology, termed dysostosis multiplex, is a prominent clinical feature of MPS VII. We have evaluated a gene therapy protocol for its efficacy in preventing the development and progression of bone pathology in MPS VII mice treated with a lentiviral vector at birth or at 7 weeks. Two weeks after injections, high levels of vector expression were observed in liver, spleen and bone marrow and to a lesser extent in kidney, lung and heart. Widespread clearance of GAG storage was observed in somatic tissues of both groups and some clearance of neuronal storage was observed in mice treated from birth. Micro-CT analysis demonstrated a significant decrease in vertebral and femoral bone mineral volume, trabecular number, bone surface density and cortical bone thickness in both treatment groups. Lumbar and femoral bone lengths were significantly decreased in untreated MPS VII mice, while growth plate heights were increased and these parameters did not change upon treatment. Small improvements in performance in the open field and rotarod behaviour tests were noted. Overall, systemic lentiviral-mediated gene therapy results in a measurable improvement in parameters of bone mass and architecture as well as biochemical and enzymatic correction. Conversely, growth plate chondrocytes were not responsive to treatment, as evidenced by the lack of improvement in vertebral and femoral bone length and growth plate height.
Collapse
Affiliation(s)
- Carmen E Macsai
- Genetics and Molecular Pathology, SA Pathology (CYWHS Site), Adelaide, SA 5006, Australia
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Gosman JH, Stout SD, Larsen CS. Skeletal biology over the life span: a view from the surfaces. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2012; 146 Suppl 53:86-98. [PMID: 22101688 DOI: 10.1002/ajpa.21612] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The biocultural interpretation of skeletal remains is based upon the foundation of skeletal biology. In this review we examine the current state of skeletal biology research outside of the mainstream anthropology literature. The focus is on the structural changes of bone development and growth, and modeling and repair in the four bone surfaces: periosteal, Haversian, endosteal, and trabecular. The pattern of skeletal changes is placed within the framework of the human life span. New perspectives and direction of research on the environmental, biological, and genetic influences on modeling and remodeling processes are discussed chronologically at each bone surface. Implications for biological anthropologists are considered. This approach emphasizes variation in skeletal biology as a dynamic record of development, maturity, and aging.
Collapse
Affiliation(s)
- James H Gosman
- Department of Anthropology, 4034 Smith Laboratory, The Ohio State University, Columbus, OH 43210-1106, USA.
| | | | | |
Collapse
|
40
|
Li XF, Wang SJ, Jiang LS, Dai LY. Gender- and region-specific variations of estrogen receptor α and β expression in the growth plate of spine and limb during development and adulthood. Histochem Cell Biol 2011; 137:79-95. [PMID: 22057437 DOI: 10.1007/s00418-011-0877-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2011] [Indexed: 11/25/2022]
Abstract
Although estrogen action is indispensable for normal bone growth in both genders, the roles of estrogen receptors (ERs) in mediating bone growth are not fully understood. The effects of ER inactivation on bone growth are sex and age dependent, and may differ between the axial and appendicular regions. In this study, the spatial and temporal expression of ERα and β in the tibial and spinal growth plates of the female and male rats during postnatal development was examined to explore the possible mechanisms. The level of mRNA was examined and compared with quantitative real-time PCR. The spatial location was determined by immunohistochemical analysis. The 1-, 4-, 7-, 12- and 16-week age stages correspond to early life, puberty and early adulthood after puberty, respectively. Gender- and region-specific differences in ERα and β expression were shown in the growth plates. Mainly nuclear staining of ERα and β immunoreactivity was demonstrated in the spinal and tibial growth plate chondrocytes for both genders. Moreover, our study indicated significant effect of gender on temporal ERα and β expression and of region on temporal ERα/ERβ expression ratio. However, spatial differences of region-related ERα and β expression were not observed. Gender-related spatial changes were detected only at 16 weeks of both spine and limb growth plates. ERα and β immunoreactivity was detected in the resting, proliferative and prehypertrophic chondrocytes in the early life stage and during puberty. After puberty, ERα expression was mainly located in the late proliferative and hypertrophic chondrocytes in female, whereas the expression still extended from the resting to hypertrophic chondrocytes in males. Gender- and region-specific expression patterns of ERα and β gene might be one possible reason for differences in sex- and region-related body growth phenotypes. Gender, age and region differences should be taken into consideration when the roles of ERs in the growth plate are investigated.
Collapse
Affiliation(s)
- Xin-Feng Li
- Department of Orthopedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, 200092 Shanghai, China
| | | | | | | |
Collapse
|
41
|
Brunnberg MM, Engelke E, Gielen IM, van Bree HJ, Hoffmann JE, Brunnberg L, Waibl HR. Cartilage thickness of the trochlea of the talus, with emphasis on sites predisposed to osteochondrosis dissecans, in clinically normal juvenile and adult dogs. Am J Vet Res 2011; 72:1318-24. [DOI: 10.2460/ajvr.72.10.1318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
42
|
Kim A, Dombi E, Solomon J, Fox E, Balis FM, Widemann BC. Automated volumetric growth plate measurement using magnetic resonance imaging for monitoring skeletal toxicity in children treated on investigational drug trials. Clin Cancer Res 2011; 17:5982-90. [PMID: 21807634 PMCID: PMC3439140 DOI: 10.1158/1078-0432.ccr-10-2259] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE Targeted anticancer agents have been reported to have side effects on the skeletal system such as thickening of the epiphyseal growth plate in preclinical models of juvenile, but not mature, animals. Careful evaluation of skeletal toxicity in the clinical development of targeted therapies for children is required. We validated a novel method to measure the growth plate volume using MRI. EXPERIMENTAL DESIGN A semiautomated method of volumetric growth plate measurement was developed on the basis of the differences of pixel intensity of the growth plate from surrounding bone on T(1) sagittal MRI. Two observers measured the femoral growth plate volume and thickness on three different days using 20 pediatric knee MRIs obtained at the NIH. Five subjects had two knee MRIs obtained on the same day to evaluate intrasubject reproducibility. RESULTS Volumetric analysis showed low intraobserver variability, with the coefficient of variation for the two observers ranging from 0.2% to 6.1%. Interobserver correlation was 0.99, and good concordance was shown with a mean volume difference of -1.8 mm(3). One-dimensional measurements had poorer intra and interobserver consistency. No statistically significant differences in volumetric measurements were observed between the two scans done on the same day in five subjects (P = 0.5). CONCLUSIONS MRI volumetric growth plate measurement is a reproducible and sensitive method to evaluate meaningful growth plate volume changes over time. This tool, along with close monitoring of height and laboratory evaluations for bone metabolism, may be used to evaluate potential bone and growth toxicities of children enrolled in trials of investigational drugs.
Collapse
Affiliation(s)
- AeRang Kim
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Macri EV, Gonzales Chaves MM, Rodriguez PN, Mandalunis P, Zeni S, Lifshitz F, Friedman SM. High-fat diets affect energy and bone metabolism in growing rats. Eur J Nutr 2011; 51:399-406. [PMID: 21725629 DOI: 10.1007/s00394-011-0223-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 06/17/2011] [Indexed: 11/25/2022]
Abstract
BACKGROUND High-fat diets are usually associated with greater weight (W) gain and body fat (BF). However, it is still unclear whether the type and amount of fat consumed influence BF. Additionally, dietary fat intake may also have consequences on skeletal health. OBJECTIVE To evaluate in healthy growing rats the effects of high-fat diets and type of dietary fat intake (saturated or vegetable oils) on energy and bone metabolism. METHODS At weaning, male Wistar rats (n = 50) were fed either a control diet (C; fat = 7% w/w) or a high-fat diet (20% w/w) containing either: soybean oil, corn oil (CO), linseed oil (LO), or beef tallow (BT) for 8 weeks. Zoometric parameters, BF, food intake and digestibility, and total and bone alkaline phosphatase (b-AP) were assessed. Total skeleton bone mineral density (BMD) and content (BMC), BMC/W, spine BMD, and bone volume (static-histomorphometry) were measured. RESULTS Animals fed BT diet achieved lower W versus C. Rats fed high-fat vegetable oil diets showed similar effects on the zoometric parameters but differed in BF. BT showed the lowest lipid digestibility and BMC. In contrast, high vegetable oil diets produced no significant differences in BMC, BMC/W, BMD, spine BMD, and bone volume. Marked differences were observed for LO and BT groups in b-AP and CO and BT groups in bone volume. CONCLUSION BT diet rich in saturated fatty acids had decreased digestibility and adversely affected energy and bone metabolisms, in growing healthy male rats. There were no changes in zoometric and bone parameters among rats fed high vegetable oil diets.
Collapse
Affiliation(s)
- Elisa V Macri
- Department of Biochemistry, School of Dentistry, University of Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
44
|
The turnover of mineralized growth plate cartilage into bone may be regulated by osteocytes. J Biomech 2011; 44:1765-70. [DOI: 10.1016/j.jbiomech.2011.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 04/06/2011] [Accepted: 04/06/2011] [Indexed: 11/24/2022]
|
45
|
Li XF, Yan J, Jiang LS, Dai LY. Age-related variations of leptin receptor expression in the growth plate of spine and limb: gender- and region-specific changes. Histochem Cell Biol 2011; 135:487-97. [PMID: 21452040 DOI: 10.1007/s00418-011-0805-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2011] [Indexed: 01/17/2023]
Abstract
Leptin is a potent growth-stimulating factor of bone. The effects of leptin on bone growth differ significantly between axial and appendicular regions. Gender differences of leptin function have also been suggested in normal pubertal development. To explore the mechanisms underlying these effects, we investigated the spatial and temporal expressions of the active form of the leptin receptor (Ob-Rb) in the tibial and spinal growth plates of the female and male rats during postnatal development. The 1-, 4-, 7-, 12- and 16-week age stages are representative for early life, puberty and early adulthood after puberty, respectively. Quantitative real-time PCR was used for Ob-Rb mRNA examination and comparison. The spatial location of Ob-Rb was determined by immunohistochemical analysis. There were gender- and region-specific differences in Ob-Rb mRNA expression in the growth plate. Mainly cytoplasm staining of Ob-Rb immunoreactivity was observed in the spinal and tibial growth plate chondrocytes of both genders. Spatial differences of region- and gender-related Ob-Rb expression were not observed. Ob-Rb immunoreactivity was detected in the resting, proliferative and prehypertrophic chondrocytes in early life stage and during puberty. After puberty, staining was mainly located in the late proliferative and hypertrophic chondrocytes. The results of Ob-Rb HSCORE analysis were similar to those obtained from quantitative real-time PCR. Our study indicated direct effects on the chondrocytes of the growth plate in different development stages. The region-specific expression patterns of Ob-Rb gene might be one possible reason for contrasting phenotypes in limb and spine. Different Ob-Rb expression patterns might partly contribute to age- and gender- related differences in trabecular bone mass.
Collapse
Affiliation(s)
- Xin-Feng Li
- Department of Orthopedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, 200092, Shanghai, China
| | | | | | | |
Collapse
|
46
|
Carriero A, Jonkers I, Shefelbine SJ. Mechanobiological prediction of proximal femoral deformities in children with cerebral palsy. Comput Methods Biomech Biomed Engin 2011; 14:253-62. [PMID: 20229379 DOI: 10.1080/10255841003682505] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
47
|
Cunningham CA, Black SM. The neonatal ilium-metaphyseal drivers and vascular passengers. Anat Rec (Hoboken) 2010; 293:1297-309. [PMID: 20665808 DOI: 10.1002/ar.21182] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
At birth the newborn is equipped with a developing locomotor apparatus, which will ultimately become involved in load transfer from the period when the child adopts a sitting posture through to the attainment of a bipedal gait. This load transfer has been considered to influence trabecular bone structural organization by setting up forces, which remodel the internal architecture into a functionally optimized form. However, during the neonatal developmental period the locomotor apparatus is nonweight bearing and instead only supports reflexive movements. Surprisingly, a structural organization has been identified within the internal trabecular architecture and external cortical morphology of the neonatal ilium, which appears to mimic the structural composition of the more mature bone. This study aims to build upon previous qualitative and quantitative investigation of this apparently precocious patterning by further examining structural data obtained from selected volumes of interest within the ilium. Analysis has revealed statistically significant differences in regional trabecular and cortical bone characteristics, which have formed the basis of a possible growth model for the ilium. Volumetric comparison has demonstrated the presence of three progressive "growth regions" and three "restricted growth regions," which appear to relate to metaphyseal and nonmetaphyseal borders of the ilium. Therefore, the structural data and statistical analysis presented in this study challenge the current concept of implied centrifugal ossification within the human ilium and present evidence of an alternative pattern of ossification that is largely dictated and controlled by vascular distribution and growth plate position.
Collapse
Affiliation(s)
- Craig A Cunningham
- Centre for Anatomy and Human Identification, College of Life Sciences, University of Dundee, Dundee, Scotland, UK.
| | | |
Collapse
|
48
|
Canto FRT, Garcia SB, Issa JPM, Marin A, Del-Bel E, Defino HLA. Influência da decorticação vertebral na neoformação dos tecidos da interface do enxerto ósseo. ACTA ORTOPEDICA BRASILEIRA 2010. [DOI: 10.1590/s1413-78522010000400002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
OBJETIVO: Determinar a influência da decorticação dos elementos posteriores da coluna vertebral na integração do enxerto ósseo, considerando a avaliação quantitativa e qualitativa dos tecidos (ósseo, cartilaginoso e fibroso) da interface entre o leito receptor e o enxerto ósseo. MÉTODOS: Foram utilizados 24 ratos Wistar, divididos em dois grupos de acordo com a realização da decorticação do leito receptor do enxerto. Foi utilizado enxerto autólogo derivado dos processos espinhosos das duas primeiras vértebras lombares. A neoformação tecidual na interface entre o leito receptor e seu enxerto ósseo foi avaliada após três semanas por meio de análise histomorfométrica. RESULTADOS: No grupo de animais com o leito receptor decorticado a média da porcentagem de osso neoformado foi de 40%±6,1, e 7,7%± 3,5 no grupo não decorticado (p=0,0001). A média da porcentagem de formação do tecido cartilaginoso no grupo decorticado foi de 7,2%±3,5, no não decorticado de 10,9%±5,6 (p=0,1123). A formação de tecido fibroso no grupo decorticado apresentou média de 8,6%±3,9 e no não decorticado e 24%±10,1, (p=0,0002). CONCLUSÕES: A decorticação acelerou o processo histológico da integração do enxerto ósseo. Ocorrendo maior produção de tecido ósseo neoformado e predomínio da ossificação do tipo intramembranosa no grupo de animais nos quais a decorticação foi realizada.
Collapse
|
49
|
Cunningham CA, Black SM. Anticipating bipedalism: trabecular organization in the newborn ilium. J Anat 2009; 214:817-29. [PMID: 19538628 PMCID: PMC2705293 DOI: 10.1111/j.1469-7580.2009.01073.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2009] [Indexed: 11/29/2022] Open
Abstract
Trabecular bone structural organization is considered to be predominantly influenced by localized temporal forces which act to maintain and remodel the trabecular architecture into a biomechanically optimal configuration. In the adult pelvis, the most significant remodelling forces are believed to be those generated during bipedal locomotion. However, during the fetal and neonatal period the pelvic complex is non-weight bearing and, as such, structural organization of iliac trabecular bone cannot reflect direct stance-related forces. In this study, micro-computed tomography scans from 28 neonatal ilia were analysed, using a whole bone approach, to investigate the trabecular characteristics present within specific volumes of interest relevant to density gradients highlighted in a previous radiographic study. Analysis of the structural indices bone volume fraction, trabecular thickness, trabecular spacing and trabecular number was carried out to quantitatively investigate structural composition. Quantification of the neonatal trabecular structure reinforced radiographic observations by highlighting regions of significant architectural form which grossly parallel architectural differences in the adult pattern but which have previously been attributed to stance-related forces. It is suggested that the seemingly organized rudimentary scaffold observed in the neonatal ilium may be attributable to other non-weight bearing anatomical interactions or even to a predetermined genetic blueprint. It must also be postulated that whilst the observed patterning may be indicative of a predetermined inherent template, early non-weight bearing and late stance-related locomotive influences may subsequently be superimposed upon this scaffolding and perhaps reinforced and likely remodelled at a later age. Ultimately, the analysis of this fundamental primary pattern has core implications for understanding the earliest changes in pelvic trabecular architecture and provides a baseline insight into future ontogenetic development and bipedal capabilities.
Collapse
Affiliation(s)
- Craig A Cunningham
- Centre for Anatomy and Human Identification, University of Dundee, Scotland, UK.
| | | |
Collapse
|
50
|
Gosman JH, Ketcham RA. Patterns in ontogeny of human trabecular bone from SunWatch Village in the Prehistoric Ohio Valley: general features of microarchitectural change. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2009; 138:318-32. [PMID: 18785633 DOI: 10.1002/ajpa.20931] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Although adult skeletal morphological variation is best understood within the framework of age-related processes, relatively little research has been directed towards the structure of and variation in trabecular bone during ontogeny. We report here new quantitative and structural data on trabecular bone microarchitecture in the proximal tibia during growth and development, as demonstrated in a subadult archaeological skeletal sample from the Late Prehistoric Ohio Valley. These data characterize the temporal sequence and variation in trabecular bone structure and structural parameters during ontogeny as related to the acquisition of normal functional activities and changing body mass. The skeletal sample from the Fort Ancient Period site of SunWatch Village is composed of 33 subadult and three young adult proximal tibiae. Nondestructive microCT scanning of the proximal metaphyseal and epiphyseal tibia captures the microarchitectural trabecular structure, allowing quantitative structural analyses measuring bone volume fraction, degree of anisotropy, trabecular thickness, and trabecular number. The microCT resolution effects on structural parameters were analyzed. Bone volume fraction and degree of anisotropy are highest at birth, decreasing to low values at 1 year of age, and then gradually increasing to the adult range around 6-8 years of age. Trabecular number is highest at birth and lowest at skeletal maturity; trabecular thickness is lowest at birth and highest at skeletal maturity. The results of this study highlight the dynamic sequential relationships between growth/development, general functional activities, and trabecular distribution and architecture, providing a reference for comparative studies.
Collapse
Affiliation(s)
- James H Gosman
- Department of Anthropology, The Ohio State University, Columbus, OH 43210, USA.
| | | |
Collapse
|