1
|
Lv W, Hu S, Yang F, Lin D, Zou H, Zhang W, Yang Q, Li L, Chen X, Wu Y. Heme oxygenase-1: potential therapeutic targets for periodontitis. PeerJ 2024; 12:e18237. [PMID: 39430558 PMCID: PMC11488498 DOI: 10.7717/peerj.18237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/15/2024] [Indexed: 10/22/2024] Open
Abstract
Periodontitis is one of the most prevalent inflammatory disease worldwide, which affects 11% of the global population and is a major cause of tooth loss. Recently, oxidative stress (OS) has been found to be the pivital pathophysiological mechanism of periodontitis, and overactivated OS will lead to inflammation, apoptosis, pyroptosis and alveolar bone resorption. Interestingly, heme oxygenase-1 (HO-1), a rate-limiting enzyme in heme degradation, can exert antioxidant activites through its products-carbon monoxide (CO), Fe2+, biliverdin and bilirubin in the inflammatory microenvironment, thus exhibiting anti-inflammatory, anti-apoptotic, anti-pyroptosis and bone homeostasis-regulating properties. In this review, particular focus is given to the role of HO-1 in periodontitis, including the spatial-temporal expression in periodental tissues and pathophysiological mechanisms of HO-1 in periodontitis, as well as the current therapeutic applications of HO-1 targeted drugs for periodontitis. This review aims to elucidate the potential applications of various HO-1 targeted drug therapy in the management of periodontitis, investigate the influence of diverse functional groups on HO-1 and periodontitis, and pave the way for the development of a new generation of therapeutics that will benefit patients suffering from periodontitis.
Collapse
Affiliation(s)
- Weiwei Lv
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Shichen Hu
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Fei Yang
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Dong Lin
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Haodong Zou
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Wanyan Zhang
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Qin Yang
- School of Pharmacy, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Lihua Li
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xiaowen Chen
- School of Medical Imaging, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yan Wu
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, Sichuan, China
| |
Collapse
|
2
|
Suttorp CM, Xie R, Lundvig DMS, Kuijpers-Jagtman AM, Uijttenboogaart JT, Van Rheden R, Maltha JC, Wagener FADTG. Orthodontic Forces Induce the Cytoprotective Enzyme Heme Oxygenase-1 in Rats. Front Physiol 2016; 7:283. [PMID: 27486402 PMCID: PMC4949267 DOI: 10.3389/fphys.2016.00283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/22/2016] [Indexed: 11/13/2022] Open
Abstract
Orthodontic forces disturb the microenvironment of the periodontal ligament (PDL), and induce craniofacial bone remodeling which is necessary for tooth movement. Unfortunately, orthodontic tooth movement is often hampered by ischemic injury and cell death within the PDL (hyalinization) and root resorption. Large inter-individual differences in hyalinization and root resorption have been observed, and may be explained by differential protection against hyalinization. Heme oxygenase-1 (HO-1) forms an important protective mechanism by breaking down heme into the strong anti-oxidants biliverdin/bilirubin and the signaling molecule carbon monoxide. These versatile HO-1 products protect against ischemic and inflammatory injury. We postulate that orthodontic forces induce HO-1 expression in the PDL during experimental tooth movement. Twenty-five 6-week-old male Wistar rats were used in this study. The upper three molars at one side were moved mesially using a Nickel-Titanium coil spring, providing a continuous orthodontic force of 10 cN. The contralateral side served as control. After 6, 12, 72, 96, and 120 h groups of rats were killed. On parasagittal sections immunohistochemical staining was performed for analysis of HO-1 expression and quantification of osteoclasts. Orthodontic force induced a significant time-dependent HO-1 expression in mononuclear cells within the PDL at both the apposition- and resorption side. Shortly after placement of the orthodontic appliance HO-1 expression was highly induced in PDL cells but dropped to control levels within 72 h. Some osteoclasts were also HO-1 positive but this induction was shown to be independent of time- and mechanical stress. It is tempting to speculate that differential induction of tissue protecting- and osteoclast activating genes in the PDL determine the level of bone resorption and hyalinization and, subsequently, “fast” and “slow” tooth movers during orthodontic treatment.
Collapse
Affiliation(s)
- Christiaan M Suttorp
- Department of Orthodontics and Craniofacial Biology, Radboud university medical centre, Radboud Institute for Molecular Life Sciences Nijmegen, Netherlands
| | - Rui Xie
- Department of Orthodontics and Craniofacial Biology, Radboud university medical centre, Radboud Institute for Molecular Life Sciences Nijmegen, Netherlands
| | - Ditte M S Lundvig
- Department of Orthodontics and Craniofacial Biology, Radboud university medical centre, Radboud Institute for Molecular Life Sciences Nijmegen, Netherlands
| | - Anne Marie Kuijpers-Jagtman
- Department of Orthodontics and Craniofacial Biology, Radboud university medical centre, Radboud Institute for Molecular Life Sciences Nijmegen, Netherlands
| | - Jasper Tom Uijttenboogaart
- Department of Orthodontics and Craniofacial Biology, Radboud university medical centre, Radboud Institute for Molecular Life Sciences Nijmegen, Netherlands
| | - René Van Rheden
- Department of Orthodontics and Craniofacial Biology, Radboud university medical centre, Radboud Institute for Molecular Life Sciences Nijmegen, Netherlands
| | - Jaap C Maltha
- Department of Orthodontics and Craniofacial Biology, Radboud university medical centre, Radboud Institute for Molecular Life Sciences Nijmegen, Netherlands
| | - Frank A D T G Wagener
- Department of Orthodontics and Craniofacial Biology, Radboud university medical centre, Radboud Institute for Molecular Life Sciences Nijmegen, Netherlands
| |
Collapse
|
3
|
Koyani CN, Kitz K, Rossmann C, Bernhart E, Huber E, Trummer C, Windischhofer W, Sattler W, Malle E. Activation of the MAPK/Akt/Nrf2-Egr1/HO-1-GCLc axis protects MG-63 osteosarcoma cells against 15d-PGJ2-mediated cell death. Biochem Pharmacol 2016; 104:29-41. [PMID: 26801686 PMCID: PMC4782222 DOI: 10.1016/j.bcp.2016.01.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/14/2016] [Indexed: 12/21/2022]
Abstract
Despite considerable efforts to improve treatment modalities for osteosarcoma (OS), patient survival remains poor mainly due to pro-survival pathways in OS cells. Among others, prostaglandins (PGs) are the potent regulators of bone homoeostasis and OS pathophysiology. Therefore, the present study aimed to elucidate the impact of 15-deoxy-Δ12,14-PGJ2 (15d-PGJ2, a stable PGD2 degradation product) on cell death/cell survival pathways in p53-deficient MG-63 OS cells. Our findings show that 15d-PGJ2 induces generation of reactive oxygen species that promote p38 MAPK activation and subsequent Akt phosphorylation. This pathway induced nuclear expression of Nrf2 and Egr1, and increased transcription of haem oxygenase-1 (HO-1) and the catalytic subunit of glutamate cysteine ligase (GCLc), catalysing the first step in GSH synthesis. Silencing of Nrf2, Egr1 and HO-1 significantly elevated 15d-PGJ2-mediated reduction of cellular metabolic activity. Activation of cell survival genes including HO-1 and GCLc inhibited 15d-PGJ2-induced cleavage of pro-caspase-3 and PARP. Annexin V/propidium iodide staining showed an increase in early/late apoptotic cells in response to 15d-PGJ2. The observed 15d-PGJ2-mediated signalling events are independent of PGD2 receptors (DP1 and DP2) and PPARγ. In addition, the electrophilic carbon atom C9 is a prerequisite for the observed activity of 15d-PGJ2. The present data show that the intracellular redox imbalance acted as a node and triggered both death and survival pathways in response to 15d-PGJ2. Pharmacological or genetic interference of the pro-survival pathway, the p38 MAPK/Akt/Nrf2-Egr1/HO-1-GCLc axis, sensitizes MG-63 cells towards 15d-PGJ2-mediated apoptosis.
Collapse
Affiliation(s)
- Chintan N Koyani
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Kerstin Kitz
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria; Department of Pediatrics and Adolescence Medicine, Research Unit of Osteological Research and Analytical Mass Spectrometry, Medical University of Graz, Graz, Austria
| | - Christine Rossmann
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Eva Bernhart
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Evelyn Huber
- Department of Pediatrics and Adolescence Medicine, Research Unit of Osteological Research and Analytical Mass Spectrometry, Medical University of Graz, Graz, Austria
| | - Christopher Trummer
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Werner Windischhofer
- Department of Pediatrics and Adolescence Medicine, Research Unit of Osteological Research and Analytical Mass Spectrometry, Medical University of Graz, Graz, Austria
| | - Wolfgang Sattler
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Ernst Malle
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria.
| |
Collapse
|
4
|
Clérigues V, Guillén MI, Castejón MA, Gomar F, Mirabet V, Alcaraz MJ. Heme oxygenase-1 mediates protective effects on inflammatory, catabolic and senescence responses induced by interleukin-1β in osteoarthritic osteoblasts. Biochem Pharmacol 2011; 83:395-405. [PMID: 22155307 DOI: 10.1016/j.bcp.2011.11.024] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 11/22/2011] [Accepted: 11/23/2011] [Indexed: 11/30/2022]
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease showing altered bone metabolism. Osteoblasts contribute to the regulation of cartilage metabolism and bone remodeling. We have shown previously that induction of heme oxygenase-1 (HO-1) protects OA cartilage against inflammatory and degradative responses. In this study, we investigated the effects of HO-1 induction on OA osteoblast metabolism. HO-1 was induced with cobalt protoporphyrin IX (CoPP) and by transduction with LV-HO-1. In osteoblasts stimulated with interleukin (IL)-1β, CoPP enhanced mineralization, the expression of a number of markers of osteoblast differentiation such as Runx2, bone morphogenetic protein-2, osteocalcin, and collagen 1A1 and 1A2, as well as the ratio osteoprotegerin/receptor activator of nuclear factor-κB ligand. HO-1 induction significantly reduced the expression of matrix metalloproteinase (MMP)-1, MMP-2 and MMP-3, and the production of pro-inflammatory cytokines such as tumor necrosis factor-α and IL-6 whereas IL-10 levels increased. HO-1 also exerted inhibitory effects on prostaglandin (PG)E(2) production which could be dependent on cyclooxygenase-2 and microsomal PGE synthase-1 down-regulation. The activity of senescence-associated β-galactosidase and the expression of the senescence marker caveolin-1 were significantly decreased after HO-1 induction. The inhibition of nuclear factor-κB activation induced by IL-1β in OA osteoblasts may contribute to some HO-1 effects. Our results have shown that HO-1 decreases the production of relevant inflammatory and catabolic mediators that participate in OA pathophysiology thus eliciting protective effects in OA osteoblasts.
Collapse
Affiliation(s)
- Victoria Clérigues
- Department of Pharmacology, University of Valencia, Burjasot, 46100 Valencia, Spain
| | | | | | | | | | | |
Collapse
|
5
|
Shivaram GM, Kim CH, Batra NN, Yang W, Harris SE, Jacobs CR. Novel early response genes in osteoblasts exposed to dynamic fluid flow. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2010; 368:605-16. [PMID: 20047941 PMCID: PMC2944389 DOI: 10.1098/rsta.2009.0231] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Cyclic mechanical loads applied to the skeleton from habitual physical activity result in increased bone formation. These loads lead to dynamic pressure gradients and oscillatory flow of bone interstitial fluid, which, in turn, exposes cells resident in the bony matrix to oscillatory fluid shear stress. Dynamic fluid flow has previously been shown to be a potent anabolic stimulus for cultured osteoblasts. In this study, we used cDNA microarrays to examine early phase, broad-spectrum gene expression in MC3T3-E1 osteoblasts in response to physical stimulation. RNA was harvested at 30 min and 1 h post-stimulation. RNA was used for microarray hybridization as well as subsequent reverse transcription polymerase chain reaction (RT-PCR) validation of expression levels for selected genes. Microarray results were analysed by both functional and expression profile clustering. We identified a small number of genes at both the 30 min and 1 h timepoints that were either upregulated or downregulated with flow compared to no-flow control by twofold or more. From the group of genes upregulated at 30 min, we selected nine for RT-PCR confirmation. All were found to be upregulated by at least twofold. We identify a novel set of early response genes potentially involved in mediating the anabolic response of MC3T3 osteoblasts to flow, and provide functional groupings of these genes that may shed light on the relevant mechanosensory pathways involved.
Collapse
Affiliation(s)
- Giridhar M. Shivaram
- Bone and Joint Rehabilitation Research and Development Center, Veterans Affairs Medical Center, Palo Alto, CA 94304, USA
- Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Mechanical Engineering, Stanford University, Stanford CA 94305, USA
| | - Chi Hyun Kim
- Department of Biomedical Engineering, Yonsei University, Wonju, South Korea
| | - Nikhil N. Batra
- Bone and Joint Rehabilitation Research and Development Center, Veterans Affairs Medical Center, Palo Alto, CA 94304, USA
- Department of Mechanical Engineering, Stanford University, Stanford CA 94305, USA
| | - Wuchen Yang
- Department of Periodontics and Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Stephen E. Harris
- Department of Periodontics and Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Christopher R. Jacobs
- Bone and Joint Rehabilitation Research and Development Center, Veterans Affairs Medical Center, Palo Alto, CA 94304, USA
- Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Mechanical Engineering, Stanford University, Stanford CA 94305, USA
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
- Author for correspondence ()
| |
Collapse
|
6
|
Lin TH, Tang CH, Hung SY, Liu SH, Lin YM, Fu WM, Yang RS. Upregulation of heme oxygenase-1 inhibits the maturation and mineralization of osteoblasts. J Cell Physiol 2010; 222:757-68. [PMID: 20020468 DOI: 10.1002/jcp.22008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Heme-oxygenase-1 (HO-1), an important enzyme involved in vascular disease, transplantation, and inflammation, catalyzes the degradation of heme into carbon monoxide and biliverdin. It has been reported that overexpression of HO-1 inhibits osteoclastogenesis. However, the effect of HO-1 on osteoblast differentiation is still not clear. We here used adenoviral vector expressing recombinant human HO-1 and HO-1 inducer hemin to study the effects of HO-1 in primary cultured osteoblasts. The results showed that induction of HO-1 inhibited the maturation of osteoblasts including mineralized bone nodule formation, alkaline phosphatase activity and decreased mRNA expression of several differentiation markers such as alkaline phosphatase, osteocalcin, and RUNX2. Furthermore, downstream products of HO-1, bilirubin, carbon monoxide, and iron, are involved in the inhibitory action of HO-1. HO-1 can be induced by H(2)O(2), lipopolysaccharide and inflammatory cytokines such as TNF-alpha and IL-1beta in osteoblasts and also in STZ-induced diabetic mice. In addition, endogenous PPARgamma ligand, 15-deoxy-Delta(12,14)-prostaglandin-J2 (15d-PGJ2) markedly increased both mRNA and protein levels of HO-1 in osteoblasts via PI3K-Akt and MAPK pathways. Blockade of HO activity by ZnPP IX antagonized the inhibitory action on osteocalcin expression by hemin and 15d-PGJ2. Our results indicate that upregulation of HO-1 inhibits the maturation of osteoblasts and HO-1 may be involved in oxidative- or inflammation-induced bone loss.
Collapse
Affiliation(s)
- Tzu-Hung Lin
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | | | | | | | | | | | | |
Collapse
|
7
|
Chaea HJ, Kim HR, Kang YJ, Hyun KC, Kim HJ, Seo HG, Lee JH, Yun-Choi HS, Chang KC. Heme oxygenase-1 induction by (S)-enantiomer of YS-51 (YS-51S), a synthetic isoquinoline alkaloid, inhibits nitric oxide production and nuclear factor-kappaB translocation in ROS 17/2.8 cells activated with inflammatory stimulants. Int Immunopharmacol 2007; 7:1559-68. [PMID: 17920533 DOI: 10.1016/j.intimp.2007.07.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Revised: 07/18/2007] [Accepted: 07/25/2007] [Indexed: 12/21/2022]
Abstract
Activation of the inducible nitric oxide synthase (iNOS) pathway contributes to inflammation-induced osteoporosis by suppressing bone formation and causing osteoblast apoptosis. We investigated the mechanism of action by which YS-51S, a synthetic isoquinoline alkaloid, inhibits iNOS expression and nitric oxide (NO) production in ROS 17/28 osteoblast cells activated with the mixture of TNF-alpha, IFN-gamma and LPS (MIX). YS-51S, concentration- and time-dependently, increased heme oxygenase (HO-1) expression. Treatment with YS-51S 1 h prior to MIX significantly reduced MIX-induced NO production and iNOS expression with the IC50 to NO production of 47+/-3.3 microM. Electrophoretic mobility shift assay (EMSA) and western blot analysis showed that YS-51S inhibited MIX-mediated activation and translocation of NF-kappaB to nucleus by suppressing the degradation of its inhibitory protein IkappaBalpha in cytoplasm. YS-51S also reduced NF-kappaB-luciferase activity. In addition, an HO-1 inhibitor ZnPPIX, antagonized the inhibitory effect of YS-51S on iNOS expression and DNA strand break induced by MIX, indicating prevention of NO production by YS-51S is associated with HO-1 activity. Moreover, YS-51S inhibited the oxidation of cytochrome c(2+) by peroxynitrite (PN). Our results indicated that YS-51S may be beneficial in NO-mediated inflammatory conditions such as rheumatoid arthritis by alleviating iNOS expression and NO-mediated cell death of osteoblast with 1) inducing HO-1 expression, 2) interfering the activation of NF-kappaB and 3) quenching of PN.
Collapse
Affiliation(s)
- Han-Jung Chaea
- Department of Pharmacology and Institute of Cardiovascular Research, Chonbuk National University Medical School, Chonju, 560-180, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Hoffler CE, Hankenson KD, Miller JD, Bilkhu SK, Goldstein SA. Novel explant model to study mechanotransduction and cell-cell communication. J Orthop Res 2006; 24:1687-98. [PMID: 16788985 DOI: 10.1002/jor.20207] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
To understand in situ behavior of osteocytes, we characterized a model of osteocytes in their native bone matrix and demonstrated real-time biologic activity of osteocytes while bending the bone matrix. Using 43 male Sprague-Dawley rats, dumbbell-shaped explants were harvested from stainless steel femoral implants after 6-12 weeks and incubated in culture medium or fixed. Sixteen specimens were used to determine bone volume density (BV/TV), volumetric bone mineral density (BMD) and histology for different implantation periods. Osteocyte viability was evaluated by L-lactate dehydrogenase (LDH) activity in 12 cultured explants. Confocal microscopy was used to assess tracer diffusion in three explants and changes in osteocyte pH of a mechanically loaded explant. From 6 to 12 weeks, explant BV/TV and volumetric BMD trended up 92.5% and 101%, respectively. They were significantly and highly correlated. Tissues were uniformly intramembranous and all bone cell types were present. Explants maintained LDH activity through culture day 8. Diffusion at 200 microM was limited to 1,209 Da. Explants appeared capable of reproducing complex bone biology. This model may be useful in understanding osteocyte mechanotransduction in the context of a physiologically relevant bone matrix.
Collapse
Affiliation(s)
- C Edward Hoffler
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, The University of Michigan, 2003, Biomedical Science Research Building, Ann Arbor, Michigan 48109-2200, USA
| | | | | | | | | |
Collapse
|
9
|
Rubin J, Rubin C, Jacobs CR. Molecular pathways mediating mechanical signaling in bone. Gene 2006; 367:1-16. [PMID: 16361069 PMCID: PMC3687520 DOI: 10.1016/j.gene.2005.10.028] [Citation(s) in RCA: 304] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2005] [Accepted: 10/03/2005] [Indexed: 12/26/2022]
Abstract
Bone tissue has the capacity to adapt to its functional environment such that its morphology is "optimized" for the mechanical demand. The adaptive nature of the skeleton poses an interesting set of biological questions (e.g., how does bone sense mechanical signals, what cells are the sensing system, what are the mechanical signals that drive the system, what receptors are responsible for transducing the mechanical signal, what are the molecular responses to the mechanical stimuli). Studies of the characteristics of the mechanical environment at the cellular level, the forces that bone cells recognize, and the integrated cellular responses are providing new information at an accelerating speed. This review first considers the mechanical factors that are generated by loading in the skeleton, including strain, stress and pressure. Mechanosensitive cells placed to recognize these forces in the skeleton, osteoblasts, osteoclasts, osteocytes and cells of the vasculature are reviewed. The identity of the mechanoreceptor(s) is approached, with consideration of ion channels, integrins, connexins, the lipid membrane including caveolar and non-caveolar lipid rafts and the possibility that altering cell shape at the membrane or cytoskeleton alters integral signaling protein associations. The distal intracellular signaling systems on-line after the mechanoreceptor is activated are reviewed, including those emanating from G-proteins (e.g., intracellular calcium shifts), MAPKs, and nitric oxide. The ability to harness mechanical signals to improve bone health through devices and exercise is broached. Increased appreciation of the importance of the mechanical environment in regulating and determining the structural efficacy of the skeleton makes this an exciting time for further exploration of this area.
Collapse
Affiliation(s)
- Janet Rubin
- Department of Medicine, VAMC and Emory University School of Medicine, Atlanta GA, VAMC-151, 1670 Clairmont Rd, Decatur, GA 30033, USA.
| | | | | |
Collapse
|
10
|
Chae HJ, Chin HY, Lee GY, Park HR, Yang SK, Chung HT, Pae HO, Kim HM, Chae SW, Kim HR. Carbon monoxide and nitric oxide protect against tumor necrosis factor-alpha-induced apoptosis in osteoblasts: HO-1 is necessary to mediate the protection. Clin Chim Acta 2005; 365:270-8. [PMID: 16242122 DOI: 10.1016/j.cca.2005.09.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Revised: 08/31/2005] [Accepted: 09/06/2005] [Indexed: 10/25/2022]
Abstract
BACKGROUND Carbon monoxide (CO) and nitric oxide (NO) each have unique roles for various inflammatory states, including inflammatory bone resorption. Although it is known that NO can induce the expression of the cytoprotective enzyme HO-1, there is no information as to whether the protective effect of CO requires NO production or whether CO must induce the expression of HO-1 to exert its functional effects. METHODS Murine osteoblast cells, MC3T3E1 osteoblasts, were cultured for CO and NO-associated HO-1 experiments and were transfected with pcDNA 3, pcDNA 3-HO-1, control siRNA or HO-1 siRNA using Nucleofector. For cell death measurement, MTT and annexin V assays were used. We performed Western blotting to check the expressions of HO-1 and iNOs and measured the HO-1 enzyme activity. We also measured the amounts of nitrite and nitrate using Griess reagents. RESULTS The increased expression of HO-1 is required for the protective effect of NO and a single treatment of CO can increase the expression of HO-1, and this is also important for the protective effect of CO in MC3T3E1 osteoblasts. CO as well as NO attenuates the TNF-alpha-induced apoptosis in osteoblasts. The anti-apoptotic effect of CO or NO is not mediated by cGMP, and CO has no effect on the release of NO. The inhibition of HO-1 with using the HO-1 inhibitor ZnPP or HO-1 siRNA resulted in a striking increase of apoptosis in the CO/TNF-alpha-treated cells. Furthermore, HO-1 overexpression showed resistance against the TNF-alpha-induced cytotoxicity in the MC3T3E1 osteoblasts. CONCLUSIONS There is a need for HO-1 expression to mediate the protection provided by exogenous CO or NO in osteoblasts.
Collapse
Affiliation(s)
- H J Chae
- Department of Pharmacology and Institute of Cardiovascular Research, School of Medicine, Chonbuk National University, Jeonju, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|