1
|
Kessler R, Fung FW, Patel A, Gupta N, McHugh T, Gonzalez AK, Rodan L, Harini C, Kessler SK. Diagnostic Yield of CSF Testing in Infants for Disorders of Biogenic Amine Neurotransmitter Metabolism. Neurology 2024; 102:e209300. [PMID: 38630946 DOI: 10.1212/wnl.0000000000209300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Biochemical testing of CSF for neurotransmitter metabolites and their cofactors is often used in the diagnostic evaluation of infants with neurologic disorders but requires an invasive, labor-intensive procedure with many potential sources of error. Our aim was to determine the diagnostic yield of CSF testing for biogenic amines (serotonin, norepinephrine, epinephrine, and dopamine) and their cofactors in identifying inborn errors of neurotransmitter metabolism among infants. METHODS We evaluated all infants aged 1 year or younger who underwent CSF biogenic amine neurotransmitter (CSFNT) testing at Children's Hospital of Philadelphia (CHOP) and Boston Children's Hospital (BCH) between 2008 and 2017 in this cross-sectional study. The primary outcome was the proportion of individuals who received a diagnostic result from CSFNT testing. Secondary assessments included the proportion of infants who obtained a diagnostic result from other types of diagnostic testing. RESULTS The cohort included 323 individuals (191 from CHOP and 232 from BCH). The median age at presentation was 110 days (range 36-193). The most common presenting features were seizures (71%), hypotonia (47%), and developmental delay (43%). The diagnostic yield of CSFNT testing was zero. When CSF pyridoxal-5-phosphate level was assayed with CSFNT testing, 1 patient had a diagnostic result. An etiologic diagnosis was identified in 163 patients (50%) of the cohort, with genetic testing having the highest yield (120 individuals, 37%). DISCUSSION Our findings support the case for deimplementation of CSFNT testing as a standard diagnostic test of etiology in infants aged 1 year or younger presenting with neurologic disorders.
Collapse
Affiliation(s)
- Riley Kessler
- From the Children's Hospital of Philadelphia (R.K., F.W.F., S.K.K.); Departments of Neurology and Pediatrics (F.W.F., S.K.K.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia; Inova Health System (A.P.), Fairfax, VA; Department of Neurology (N.G., L.R., C.H.), Boston Children's Hospital, MA; New York Medical College (T.M.), Valhalla, NY; and Department of Biomedical and Health Informatics (A.K.G.), Children's Hospital of Philadelphia Research Institute, PA
| | - France W Fung
- From the Children's Hospital of Philadelphia (R.K., F.W.F., S.K.K.); Departments of Neurology and Pediatrics (F.W.F., S.K.K.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia; Inova Health System (A.P.), Fairfax, VA; Department of Neurology (N.G., L.R., C.H.), Boston Children's Hospital, MA; New York Medical College (T.M.), Valhalla, NY; and Department of Biomedical and Health Informatics (A.K.G.), Children's Hospital of Philadelphia Research Institute, PA
| | - Amisha Patel
- From the Children's Hospital of Philadelphia (R.K., F.W.F., S.K.K.); Departments of Neurology and Pediatrics (F.W.F., S.K.K.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia; Inova Health System (A.P.), Fairfax, VA; Department of Neurology (N.G., L.R., C.H.), Boston Children's Hospital, MA; New York Medical College (T.M.), Valhalla, NY; and Department of Biomedical and Health Informatics (A.K.G.), Children's Hospital of Philadelphia Research Institute, PA
| | - Nishtha Gupta
- From the Children's Hospital of Philadelphia (R.K., F.W.F., S.K.K.); Departments of Neurology and Pediatrics (F.W.F., S.K.K.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia; Inova Health System (A.P.), Fairfax, VA; Department of Neurology (N.G., L.R., C.H.), Boston Children's Hospital, MA; New York Medical College (T.M.), Valhalla, NY; and Department of Biomedical and Health Informatics (A.K.G.), Children's Hospital of Philadelphia Research Institute, PA
| | - Trevor McHugh
- From the Children's Hospital of Philadelphia (R.K., F.W.F., S.K.K.); Departments of Neurology and Pediatrics (F.W.F., S.K.K.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia; Inova Health System (A.P.), Fairfax, VA; Department of Neurology (N.G., L.R., C.H.), Boston Children's Hospital, MA; New York Medical College (T.M.), Valhalla, NY; and Department of Biomedical and Health Informatics (A.K.G.), Children's Hospital of Philadelphia Research Institute, PA
| | - Alexander K Gonzalez
- From the Children's Hospital of Philadelphia (R.K., F.W.F., S.K.K.); Departments of Neurology and Pediatrics (F.W.F., S.K.K.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia; Inova Health System (A.P.), Fairfax, VA; Department of Neurology (N.G., L.R., C.H.), Boston Children's Hospital, MA; New York Medical College (T.M.), Valhalla, NY; and Department of Biomedical and Health Informatics (A.K.G.), Children's Hospital of Philadelphia Research Institute, PA
| | - Lance Rodan
- From the Children's Hospital of Philadelphia (R.K., F.W.F., S.K.K.); Departments of Neurology and Pediatrics (F.W.F., S.K.K.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia; Inova Health System (A.P.), Fairfax, VA; Department of Neurology (N.G., L.R., C.H.), Boston Children's Hospital, MA; New York Medical College (T.M.), Valhalla, NY; and Department of Biomedical and Health Informatics (A.K.G.), Children's Hospital of Philadelphia Research Institute, PA
| | - Chellamani Harini
- From the Children's Hospital of Philadelphia (R.K., F.W.F., S.K.K.); Departments of Neurology and Pediatrics (F.W.F., S.K.K.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia; Inova Health System (A.P.), Fairfax, VA; Department of Neurology (N.G., L.R., C.H.), Boston Children's Hospital, MA; New York Medical College (T.M.), Valhalla, NY; and Department of Biomedical and Health Informatics (A.K.G.), Children's Hospital of Philadelphia Research Institute, PA
| | - Sudha K Kessler
- From the Children's Hospital of Philadelphia (R.K., F.W.F., S.K.K.); Departments of Neurology and Pediatrics (F.W.F., S.K.K.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia; Inova Health System (A.P.), Fairfax, VA; Department of Neurology (N.G., L.R., C.H.), Boston Children's Hospital, MA; New York Medical College (T.M.), Valhalla, NY; and Department of Biomedical and Health Informatics (A.K.G.), Children's Hospital of Philadelphia Research Institute, PA
| |
Collapse
|
2
|
Juliá-Palacios N, Molina-Anguita C, Sigatulina Bondarenko M, Cortès-Saladelafont E, Aparicio J, Cuadras D, Horvath G, Fons C, Artuch R, García-Cazorla À, Darling A, O’Callaghan M, Pías‐Peleteiro L, Ormazabal A, Mussarra CO, Valera C, Ramírez‐Camacho A. Monoamine neurotransmitters in early epileptic encephalopathies: New insights into pathophysiology and therapy. Dev Med Child Neurol 2022; 64:915-923. [PMID: 35833444 DOI: 10.1111/dmcn.15140] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 01/29/2023]
Abstract
AIM To study neurotransmitter status in children with early epileptic and developmental and epileptic encephalopathy (DEE) and to explore the clinical response to dopaminergic and serotoninergic therapies in a group of patients. METHOD Two hundred and five patients (111 males [54.1.%] and 94 females [45.9%], mean age 10 months at the onset of epilepsy [SD 1 year 1 month], range 0-3 year) with epileptic encephalopathy/DEE were recruited, including those with West syndrome, Ohtahara syndrome, early myoclonic encephalopathy, epilepsy of infancy with migrating focal seizures, myoclonic encephalopathy in non-progressive disorders, infantile spasms, Doose syndrome, Lennox-Gastaut syndrome, Landau-Kleffner syndrome, and those unclassified. Cerebrospinal fluid (CSF) neurotransmitter studies and patients' medical records were reviewed. Additionally, we present clinical data of 10 patients with low CSF neurotransmitter levels who received dopaminergic/serotoninergic treatments. RESULTS Abnormal neurotransmitter values were identified in 68 (33%) patients. 5-Hydroxyindoleacetic acid (5-HIAA) deficit was the most prevalent alteration (91%). Low CSF 5-HIAA levels were significantly higher in 1- to 3-year-old children. A negative significant correlation was found between 5-HIAA levels and epilepsy duration before CSF study (Spearman's ρ=-0.191, p=0.007). Abnormalities in deep grey matter were associated with low levels of CSF homovanillic acid and 5-HIAA. Ten patients with low CSF neurotransmitter levels received dopamine and/or serotonin therapies. Six of them showed initial decrease of seizure frequency and severity and maintained improvement in some neurodevelopmental skills. INTERPRETATION A considerable number of patients showed neurotransmitter abnormalities. Age at seizure onset and duration of epilepsy before CSF study were the principal factors related to neurotransmitter depletion. Early monoamine supplementation would seem advisable as a neuroprotective strategy. WHAT THIS PAPER ADDS 5-Hydroxyindoleacetic acid homeostasis is especially vulnerable in patients with epileptic encephalopathy/developmental and epileptic encephalopathy. Age of seizure onset and duration of epilepsy are determinants of neurotransmitter depletion.
Collapse
Affiliation(s)
- Natalia Juliá-Palacios
- Neurology Department, Neurometabolic Unit, Institut de Recerca, CIBERER and MetabERN, Hospital Sant Joan de Déu, Barcelona, Spain
| | | | - María Sigatulina Bondarenko
- Neurology Department, Neurometabolic Unit, Institut de Recerca, CIBERER and MetabERN, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Elisenda Cortès-Saladelafont
- Neurology Department, Neurometabolic Unit, Institut de Recerca, CIBERER and MetabERN, Hospital Sant Joan de Déu, Barcelona, Spain.,Unit of Inherited Metabolic Diseases and Neuropediatrics, Department of Pediatrics, Hospital Universitari Germans Trias i Pujol, Barcelona, Spain
| | - Javier Aparicio
- Neurology Department, Epilepsy Unit, Institut de Recerca and EpiCare, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Daniel Cuadras
- Statistics Department, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Gabriella Horvath
- Department of Pediatrics, Division of Biochemical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Carmen Fons
- Neurology Department, Fetal, Neonatal Neurology and Early Epilepsy Unit, Institut de Recerca, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Rafael Artuch
- Department of Clinical Biochemistry, IPR and CIBERER-ISCIII, Hospital Sant Joan de Déu Barcelona, Barcelona, Spain
| | - Àngels García-Cazorla
- Neurology Department, Neurometabolic Unit, Institut de Recerca, CIBERER and MetabERN, Hospital Sant Joan de Déu, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
van Karnebeek CD, Blydt-Hansen I, Matthews AM, Avramovic V, Price M, Drogemoller B, Shyr C, Lee J, Mwenifumbo J, Ghani A, Stockler S, Friedman JM, Lehman A, Ross CJ, Wasserman WW, Tarailo-Graovac M, Horvath GA. Secondary biogenic amine deficiencies: genetic etiology, therapeutic interventions, and clinical effects. Neurogenetics 2021; 22:251-262. [PMID: 34213677 DOI: 10.1007/s10048-021-00652-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 06/08/2021] [Indexed: 11/25/2022]
Abstract
Monoamine neurotransmitter disorders present predominantly with neurologic features, including dystonic or dyskinetic cerebral palsy and movement disorders. Genetic conditions that lead to secondary defects in the synthesis, catabolism, transport, and metabolism of biogenic amines can lead to neurotransmitter abnormalities, which can present with similar features. Eleven patients with secondary neurotransmitter abnormalities were enrolled between 2011 and 2015. All patients underwent research-based whole exome and/or whole genome sequencing (WES/WGS). A trial of treatment with levodopa/carbidopa and 5-hydroxytryptophan was initiated. In six families with abnormal neurotransmitter profiles and neurological phenotypes, variants in known disease-causing genes (KCNJ6, SCN2A, CSTB in 2 siblings, NRNX1, KIF1A and PAK3) were identified, while one patient had a variant of uncertain significance in a candidate gene (DLG4) that may explain her phenotype. In 3 patients, no compelling candidate genes were identified. A trial of neurotransmitter replacement therapy led to improvement in motor and behavioral symptoms in all but two patients. The patient with KCNJ6 variant did not respond to L-dopa therapy, but rather experienced increased dyskinetic movements even at low dose of medication. The patient's symptoms harboring the NRNX1 deletion remained unaltered. This study demonstrates the utility of genome-wide sequencing in further understanding the etiology and pathophysiology of neurometabolic conditions, and the potential of secondary neurotransmitter deficiencies to serve as novel therapeutic targets. As there was a largely favorable response to therapy in our case series, a careful trial of neurotransmitter replacement therapy should be considered in patients with cerebrospinal fluid (CSF) monoamines below reference range.
Collapse
Affiliation(s)
- Clara D van Karnebeek
- BC Children's Hospital Research Institute, Vancouver, BC, Canada.,Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada.,Department of Pediatrics, Amsterdam University Medical Centre, Amsterdam, the Netherlands.,Department of Pediatrics, Radboud University Medical Center, Nijmegen, the Netherlands.,United for Metabolic Diseases', Amsterdam, the Netherlands
| | | | - Allison M Matthews
- BC Children's Hospital Research Institute, Vancouver, BC, Canada.,Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Vladimir Avramovic
- Department of Biochemistry, Molecular Biology, and Medical Genetics, Cumming School of Medicine, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Magda Price
- BC Children's Hospital Research Institute, Vancouver, BC, Canada.,Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | | | - Casper Shyr
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Jessica Lee
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Jill Mwenifumbo
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Aisha Ghani
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Sylvia Stockler
- BC Children's Hospital Research Institute, Vancouver, BC, Canada.,Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Jan M Friedman
- BC Children's Hospital Research Institute, Vancouver, BC, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Anna Lehman
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.,Adult Metabolic Diseases Clinic, Vancouver General Hospital, Vancouver, Canada
| | | | - Colin J Ross
- BC Children's Hospital Research Institute, Vancouver, BC, Canada.,Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Wyeth W Wasserman
- BC Children's Hospital Research Institute, Vancouver, BC, Canada.,Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Maja Tarailo-Graovac
- Department of Biochemistry, Molecular Biology, and Medical Genetics, Cumming School of Medicine, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.
| | - Gabriella A Horvath
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada. .,Adult Metabolic Diseases Clinic, Vancouver General Hospital, Vancouver, Canada. .,Biochemical Genetics, BC Children's Hospital, 4480 Oak Street, Vancouver, BC, V6H 3V4, Canada.
| |
Collapse
|
4
|
Mastrangelo M. Epilepsy in inherited neurotransmitter disorders: Spotlights on pathophysiology and clinical management. Metab Brain Dis 2021; 36:29-43. [PMID: 33095372 DOI: 10.1007/s11011-020-00635-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 10/16/2020] [Indexed: 01/02/2023]
Abstract
Inborn errors of neurotransmitter metabolism are ultrarare disorders affecting neurotransmitter biosynthesis, breakdown or transport or their essential cofactors. Neurotransmitter dysfunctions could also result from the impairment of neuronal receptors, intracellular signaling, vesicle release or other synaptic abnormalities. Epilepsy is the main clinical hallmark in some of these diseases (e.g. disorders of GABA metabolism, glycine encephalopathy) while it is infrequent in others (e.g. all the disorders of monoamine metabolism in exception for dihydropteridine reductase deficiency). This review analyzes the epileptogenic mechanisms, the epilepsy phenotypes and the principle for the clinical management of epilepsy in primary and secondary inherited disorders of neurotransmitter metabolism (disorders of GABA, serine and glycine metabolism, disorders of neurotransmitter receptors and secondary neurotransmitter diseases).
Collapse
Affiliation(s)
- Mario Mastrangelo
- Child Neurology and Psychiatry Unit-Department of Human Neuroscience, Sapienza Università di Roma-Umberto I Policlinico di Roma, Via dei Sabelli, 108 - 00141, Roma, Italy.
| |
Collapse
|
5
|
Cameron S, Gillio-Meina C, Ranger A, Choong K, Fraser DD. Collection and Analyses of Cerebrospinal Fluid for Pediatric Translational Research. Pediatr Neurol 2019; 98:3-17. [PMID: 31280949 DOI: 10.1016/j.pediatrneurol.2019.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/23/2019] [Accepted: 05/27/2019] [Indexed: 12/18/2022]
Abstract
Cerebrospinal fluid sample collection and analysis is imperative to better elucidate central nervous system injury and disease in children. Sample collection methods are varied and carry with them certain ethical and biologic considerations, complications, and contraindications. Establishing best practices for sample collection, processing, storage, and transport will ensure optimal sample quality. Cerebrospinal fluid samples can be affected by a number of factors including subject age, sampling method, sampling location, volume extracted, fraction, blood contamination, storage methods, and freeze-thaw cycles. Indicators of sample quality can be assessed by matrix-associated laser desorption/ionization time-of-flight mass spectrometry and include cystatin C fragments, oxidized proteins, prostaglandin D synthase, and evidence of blood contamination. Precise documentation of sample collection processes and the establishment of meticulous handling procedures are essential for the creation of clinically relevant biospecimen repositories. In this review we discuss the ethical considerations and best practices for cerebrospinal fluid collection, as well as the influence of preanalytical factors on cerebrospinal fluid analyses. Cerebrospinal fluid biomarkers in highly researched pediatric diseases or disorders are discussed.
Collapse
Affiliation(s)
| | | | - Adrianna Ranger
- Pediatrics, Western University, London, Ontario, Canada; Clinical Neurological Sciences, Western University, London, Ontario, Canada
| | - Karen Choong
- Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Douglas D Fraser
- Pediatrics, Western University, London, Ontario, Canada; Children's Health Research Institute, London, Ontario, Canada; Clinical Neurological Sciences, Western University, London, Ontario, Canada; Physiology and Pharmacology, Western University, London, Ontario, Canada; Translational Research Centre, London, Ontario, Canada.
| |
Collapse
|
6
|
Frederiksen SD. Promote Biomarker Discovery by Identifying Homogenous Primary Headache Subgroups. Headache 2019; 59:797-801. [DOI: 10.1111/head.13499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2019] [Indexed: 12/11/2022]
|