1
|
O'Connor C, Mullally RE, McComish SF, O'Sullivan J, Woods I, Schoen I, Garre M, Caldwell MA, Dervan A, O'Brien FJ. Neurotrophic extracellular matrix proteins promote neuronal and iPSC astrocyte progenitor cell- and nano-scale process extension for neural repair applications. J Anat 2024. [PMID: 39463075 DOI: 10.1111/joa.14163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/17/2024] [Accepted: 10/11/2024] [Indexed: 10/29/2024] Open
Abstract
The extracellular matrix plays a critical role in modulating cell behaviour in the developing and adult central nervous system influencing neural cell morphology, function and growth. Neurons and astrocytes, play vital roles in neural signalling and support respectively and respond to cues from the surrounding matrix environment. However, a better understanding of the impact of specific individual extracellular matrix proteins on both neurons and astrocytes is critical for advancing the development of matrix-based scaffolds for neural repair applications. This study aimed to provide an in-depth analysis of how different commonly used extracellular matrix proteins- laminin-1, Fn, collagen IV, and collagen I-affect the morphology and growth of trophic induced pluripotent stem cell (iPSC)-derived astrocyte progenitors and mouse motor neuron-like cells. Following a 7-day culture period, morphological assessments revealed that laminin-1, fibronectin, and collagen-IV, but not collagen I, promoted increased process extension and a stellate morphology in astrocytes, with collagen-IV yielding the greatest increases. Subsequent analysis of neurons grown on the different extracellular matrix proteins revealed a similar pattern with laminin-1, fibronectin, and collagen-IV supporting robust neurite outgrowth. fibronectin promoted the greatest increase in neurite extension, while collagen-I did not enhance neurite growth compared to poly-L-lysine controls. Super-resolution microscopy highlighted extracellular matrix-specific nanoscale changes in cytoskeletal organization, with distinct patterns of actin filament distribution where the three basement membrane-associated proteins (laminin-1, fibronectin, and collagen-IV) promoted the extension of fine cellular processes. Overall, this study demonstrates the potent effect of laminin-1, fibronectin and collagen-IV to promote both iPSC-derived astrocyte progenitor and neuronal growth, yielding detailed insights into the effect of extracellular matrix proteins on neural cell morphology at both the whole cell and nanoscale levels. The ability of laminin-1, collagen-IV and fibronectin to elicit strong growth-promoting effects highlight their suitability as optimal extracellular matrix proteins to incorporate into neurotrophic biomaterial scaffolds for the delivery of cell cargoes for neural repair.
Collapse
Affiliation(s)
- Cian O'Connor
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI & TCD, Dublin, Ireland
| | - Rena E Mullally
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI & TCD, Dublin, Ireland
| | - Sarah F McComish
- Department of Physiology, School of Medicine, TCD, Dublin, Ireland
- Trinity College Institute of Neuroscience, TCD, Dublin, Ireland
| | - Julia O'Sullivan
- Department of Physiology, School of Medicine, TCD, Dublin, Ireland
- Trinity College Institute of Neuroscience, TCD, Dublin, Ireland
| | - Ian Woods
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI & TCD, Dublin, Ireland
| | - Ingmar Schoen
- School of Pharmacy and Biomolecular Sciences, RCSI, Dublin, Ireland
| | - Massimiliano Garre
- Super-Resolution Imaging Consortium, Department of Chemistry RCSI, Dublin, Ireland
| | - Maeve A Caldwell
- Department of Physiology, School of Medicine, TCD, Dublin, Ireland
- Trinity College Institute of Neuroscience, TCD, Dublin, Ireland
| | - Adrian Dervan
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI & TCD, Dublin, Ireland
| | - Fergal J O'Brien
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI & TCD, Dublin, Ireland
| |
Collapse
|
2
|
Filiz Y, Esposito A, De Maria C, Vozzi G, Yesil-Celiktas O. A comprehensive review on organ-on-chips as powerful preclinical models to study tissue barriers. PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2024; 6:042001. [PMID: 39655848 DOI: 10.1088/2516-1091/ad776c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 09/04/2024] [Indexed: 12/18/2024]
Abstract
In the preclinical stage of drug development, 2D and 3D cell cultures under static conditions followed by animal models are utilized. However, these models are insufficient to recapitulate the complexity of human physiology. With the developing organ-on-chip (OoC) technology in recent years, human physiology and pathophysiology can be modeled better than traditional models. In this review, the need for OoC platforms is discussed and evaluated from both biological and engineering perspectives. The cellular and extracellular matrix components are discussed from a biological perspective, whereas the technical aspects such as the intricate working principles of these systems, the pivotal role played by flow dynamics and sensor integration within OoCs are elucidated from an engineering perspective. Combining these two perspectives, bioengineering applications are critically discussed with a focus on tissue barriers such as blood-brain barrier, ocular barrier, nasal barrier, pulmonary barrier and gastrointestinal barrier, featuring recent examples from the literature. Furthermore, this review offers insights into the practical utility of OoC platforms for modeling tissue barriers, showcasing their potential and drawbacks while providing future projections for innovative technologies.
Collapse
Affiliation(s)
- Yagmur Filiz
- Department of Development and Regeneration, Faculty of Medicine, KU Leuven, 8500 Kortrijk, Belgium
| | - Alessio Esposito
- Research Center E. Piaggio and Department of Information Engineering, University of Pisa, Largo L. Lazzarino 1, Pisa 56126, Italy
| | - Carmelo De Maria
- Research Center E. Piaggio and Department of Information Engineering, University of Pisa, Largo L. Lazzarino 1, Pisa 56126, Italy
| | - Giovanni Vozzi
- Research Center E. Piaggio and Department of Information Engineering, University of Pisa, Largo L. Lazzarino 1, Pisa 56126, Italy
| | - Ozlem Yesil-Celiktas
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Izmir, Turkey
- EgeSAM-Ege University Translational Pulmonary Research Center, Bornova, Izmir, Turkey
- ODTÜ MEMS Center, Ankara, Turkey
| |
Collapse
|
3
|
Ortega JA, Soares de Aguiar GP, Chandravanshi P, Levy N, Engel E, Álvarez Z. Exploring the properties and potential of the neural extracellular matrix for next-generation regenerative therapies. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1962. [PMID: 38723788 DOI: 10.1002/wnan.1962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 05/24/2024]
Abstract
The extracellular matrix (ECM) is a dynamic and complex network of proteins and molecules that surrounds cells and tissues in the nervous system and orchestrates a myriad of biological functions. This review carefully examines the diverse interactions between cells and the ECM, as well as the transformative chemical and physical changes that the ECM undergoes during neural development, aging, and disease. These transformations play a pivotal role in shaping tissue morphogenesis and neural activity, thereby influencing the functionality of the central nervous system (CNS). In our comprehensive review, we describe the diverse behaviors of the CNS ECM in different physiological and pathological scenarios and explore the unique properties that make ECM-based strategies attractive for CNS repair and regeneration. Addressing the challenges of scalability, variability, and integration with host tissues, we review how advanced natural, synthetic, and combinatorial matrix approaches enhance biocompatibility, mechanical properties, and functional recovery. Overall, this review highlights the potential of decellularized ECM as a powerful tool for CNS modeling and regenerative purposes and sets the stage for future research in this exciting field. This article is categorized under: Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Implantable Materials and Surgical Technologies > Nanomaterials and Implants.
Collapse
Affiliation(s)
- J Alberto Ortega
- Department of Pathology and Experimental Therapeutics, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet del Llobregat, Spain
| | - Gisele P Soares de Aguiar
- Department of Pathology and Experimental Therapeutics, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet del Llobregat, Spain
| | - Palash Chandravanshi
- Biomaterials for Neural Regeneration Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Natacha Levy
- Biomaterials for Neural Regeneration Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Elisabeth Engel
- IMEM-BRT Group, Department of Materials Science and Engineering, EEBE, Technical University of Catalonia (UPC), Barcelona, Spain
- Biomaterials for Regenerative Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
| | - Zaida Álvarez
- Biomaterials for Neural Regeneration Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
4
|
Saglam-Metiner P, Yildirim E, Dincer C, Basak O, Yesil-Celiktas O. Humanized brain organoids-on-chip integrated with sensors for screening neuronal activity and neurotoxicity. Mikrochim Acta 2024; 191:71. [PMID: 38168828 DOI: 10.1007/s00604-023-06165-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024]
Abstract
The complex structure and function of the human central nervous system that develops from the neural tube made in vitro modeling quite challenging until the discovery of brain organoids. Human-induced pluripotent stem cells-derived brain organoids offer recapitulation of the features of early human neurodevelopment in vitro, including the generation, proliferation, and differentiation into mature neurons and micro-macroglial cells, as well as the complex interactions among these diverse cell types of the developing brain. Recent advancements in brain organoids, microfluidic systems, real-time sensing technologies, and their cutting-edge integrated use provide excellent models and tools for emulation of fundamental neurodevelopmental processes, the pathology of neurological disorders, personalized transplantation therapy, and high-throughput neurotoxicity testing by bridging the gap between two-dimensional models and the complex three-dimensional environment in vivo. In this review, we summarize how bioengineering approaches are applied to mitigate the limitations of brain organoids for biomedical and clinical research. We further provide an extensive overview and future perspectives of the humanized brain organoids-on-chip platforms with integrated sensors toward brain organoid intelligence and biocomputing studies. Such approaches might pave the way for increasing approvable clinical applications by solving their current limitations.
Collapse
Affiliation(s)
- Pelin Saglam-Metiner
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey
- Department of Translational Neuroscience, Division of Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Ender Yildirim
- Department of Mechanical Engineering, Middle East Technical University, Ankara, Turkey
- ODTÜ MEMS Center, Ankara, Turkey
| | - Can Dincer
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Freiburg, Germany
- FIT Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg, Germany
| | - Onur Basak
- Department of Translational Neuroscience, Division of Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Ozlem Yesil-Celiktas
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey.
| |
Collapse
|
5
|
Saglam-Metiner P, Duran E, Sabour-Takanlou L, Biray-Avci C, Yesil-Celiktas O. Differentiation of Neurons, Astrocytes, Oligodendrocytes and Microglia From Human Induced Pluripotent Stem Cells to Form Neural Tissue-On-Chip: A Neuroinflammation Model to Evaluate the Therapeutic Potential of Extracellular Vesicles Derived from Mesenchymal Stem Cells. Stem Cell Rev Rep 2024; 20:413-436. [PMID: 37938408 DOI: 10.1007/s12015-023-10645-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 11/09/2023]
Abstract
Advances in stem cell (SC) technology allow the generation of cellular models that recapitulate the histological, molecular and physiological properties of humanized in vitro three dimensional (3D) models, as well as production of cell-derived therapeutics such as extracellular vesicles (EVs). Improvements in organ-on-chip platforms and human induced pluripotent stem cells (hiPSCs) derived neural/glial cells provide unprecedented systems for studying 3D personalized neural tissue modeling with easy setup and fast output. Here, we highlight the key points in differentiation procedures for neurons, astrocytes, oligodendrocytes and microglia from single origin hiPSCs. Additionally, we present a well-defined humanized neural tissue-on-chip model composed of differentiated cells with the same genetic backgrounds, as well as the therapeutic potential of bone marrow mesenchymal stem cells (BMSCs)-derived extracellular vesicles to propose a novel treatment for neuroinflammation derived diseases. Around 100 nm CD9 + EVs promote a more anti-inflammatory and pro-remodeling of cell-cell interaction cytokine responses on tumor necrosis factor-α (TNF-α) induced neuroinflammation in neural tissue-on-chip model which is ideal for modeling authentic neural-glial patho-physiology.
Collapse
Affiliation(s)
- Pelin Saglam-Metiner
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey
- Department of Translational Neuroscience, Division of Neuroscience, UMC Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Elif Duran
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey
| | | | - Cigir Biray-Avci
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Ozlem Yesil-Celiktas
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey.
| |
Collapse
|
6
|
Odabasi Y, Yanasik S, Saglam-Metiner P, Kaymaz Y, Yesil-Celiktas O. Comprehensive Transcriptomic Investigation of Rett Syndrome Reveals Increasing Complexity Trends from Induced Pluripotent Stem Cells to Neurons with Implications for Enriched Pathways. ACS OMEGA 2023; 8:44148-44162. [PMID: 38027357 PMCID: PMC10666228 DOI: 10.1021/acsomega.3c06448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023]
Abstract
Rett syndrome (RTT) is a rare genetic neurodevelopmental disorder that has no cure apart from symptomatic treatments. While intense research efforts are required to fulfill this unmet need, the fundamental challenge is to obtain sufficient patient data. In this study, we used human transcriptomic data of four different sample types from RTT patients including induced pluripotent stem cells, differentiated neural progenitor cells, differentiated neurons, and postmortem brain tissues with an increasing in vivo-like complexity to unveil specific trends in gene expressions across the samples. Based on DEG analysis, we identified F8A3, CNTN6, RPE65, and COL19A1 to have differential expression levels in three sample types and also observed previously reported genes such as MECP2, FOXG1, CACNA1G, SATB2, GABBR2, MEF2C, KCNJ10, and CUX2 in our study. Considering the significantly enriched pathways for each sample type, we observed a consistent increase in numbers from iPSCs to NEUs where MECP2 displayed profound effects. We also validated our GSEA results by using single-cell RNA-seq data. In WGCNA, we elicited a connection among MECP2, TNRC6A, and HOXA5. Our findings highlight the utility of transcriptomic analyses to determine genes that might lead to therapeutic strategies.
Collapse
Affiliation(s)
- Yusuf
Caglar Odabasi
- Department of Bioengineering,
Faculty of Engineering, Ege University, Izmir 35100, Turkey
| | - Sena Yanasik
- Department of Bioengineering,
Faculty of Engineering, Ege University, Izmir 35100, Turkey
| | - Pelin Saglam-Metiner
- Department of Bioengineering,
Faculty of Engineering, Ege University, Izmir 35100, Turkey
| | - Yasin Kaymaz
- Department of Bioengineering,
Faculty of Engineering, Ege University, Izmir 35100, Turkey
| | - Ozlem Yesil-Celiktas
- Department of Bioengineering,
Faculty of Engineering, Ege University, Izmir 35100, Turkey
| |
Collapse
|
7
|
Kakabadze Z, Paresishvili T. Intravital tumor decellularization as a new approach to cancer treatment. Am J Cancer Res 2023; 13:4192-4207. [PMID: 37818079 PMCID: PMC10560955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/08/2023] [Indexed: 10/12/2023] Open
Abstract
This study demonstrates the possibility of tumor decellularization in living animals. Subcutaneous Ehrlich tumor induced by isolated Ehrlich ascitic carcinoma cells in mice was used as a model. The study also presents methods for ex vivo decellularization of human gastric adenocarcinoma (HGA) and hepatocellular carcinoma (HCC) induced by diethylnitrosamine (DEN) in rat. Sodium dodecyl sulfate (SDS) and Triton X-100 were used as detergents for tumor decellularization. The detergents for HGA and HCC were administered through organ vessels. For intravital decellularization of Ehrlich's subcutaneous tumor, detergents were injected directly into the tumor parenchyma. The results of the study showed that the effectiveness of tumor decellularization using SDS and Triton X-100 depended on the size, structure, stiffness and density of the tumor, as well as on the concentration, route and speed of detergent administration. The study also showed that an hour after the initiation of decellularization, the central part of Ehrlich's tumor changed the color, and after three hours, it completely acquired a translucent white color. Chemical contamination of tissues surrounding the tumor with the detergents was not observed. Histological studies showed the complete absence of all cellular components of Ehrlich's tumor and a slightly deformed extracellular matrix (ECM). There were no loco-regional recurrences or metastases of Ehrlich's tumor within 150 days after decellularization. The developed intravital decellularization method allows the effective removal of the cellular components and the DNA content of Ehrlich's subcutaneous tumor without compromising animal health. Additionally, this method can destroy tumor ECM, which will significantly improve the delivery of anticancer drugs to the tumor cells. However, more detailed and extensive studies are needed to develop an in vivo technique for isolated decellularization of the tumor or a part of the organ with the tumor. It is also necessary to identify less toxic decellularization agents and to develop the most efficient route for their delivery to the tumor cells.
Collapse
Affiliation(s)
- Zurab Kakabadze
- Department of Clinical Anatomy, Tbilisi State Medical University 0186 Tbilisi, Georgia
| | - Teona Paresishvili
- Department of Clinical Anatomy, Tbilisi State Medical University 0186 Tbilisi, Georgia
| |
Collapse
|
8
|
Ha BG, Jang YJ, Lee E, Kim BG, Myung K, Sun W, Jeong SJ. Isolation and identification of extracellular matrix proteins from oil-based CASPERized mouse brains for matrisomal analysis. Heliyon 2023; 9:e14777. [PMID: 37025807 PMCID: PMC10070542 DOI: 10.1016/j.heliyon.2023.e14777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 03/02/2023] [Accepted: 03/16/2023] [Indexed: 03/31/2023] Open
Abstract
The extracellular matrix (ECM) components present within all tissues and organs help to maintain the cytoskeletal architecture and tissue morphology. Although the ECM plays a role in cellular events and signaling pathways, it has not been well studied due its insolubility and complexity. Brain tissue has a higher cell density and weaker mechanical strength than other tissues in the body. When removing cells using a general decellularization method to produce scaffolds and obtain ECM proteins, various problems must be considered because tissues are easily damaged. To retain the brain shape and ECM components, we performed decellularization in combination with polymerization. We immersed mouse brains in oil for polymerization and decellularization via O-CASPER (Oil-based Clinically and Experimentally Applicable Acellular Tissue Scaffold Production for Tissue Engineering and Regenerative Medicine) and then isolated ECM components using sequential matrisome preparation reagents (SMPRs), namely, RIPA, PNGase F, and concanavalin A. Adult mouse brains were preserved with our decellularization method. Western blot and LC-MS/MS analyses revealed that ECM components, including collagen and laminin, were isolated efficiently from decellularized mouse brains using SMPRs. Our method will be useful to obtain matrisomal data and perform functional studies using adult mouse brains and other tissues.
Collapse
Affiliation(s)
- Byung Geun Ha
- Research Group of Developmental Disorders and Rare Diseases, Korea Brain Research Institute (KBRI), Daegu, 41062, Republic of Korea
| | - Yu-Jin Jang
- Research Group of Developmental Disorders and Rare Diseases, Korea Brain Research Institute (KBRI), Daegu, 41062, Republic of Korea
| | - EunSoo Lee
- Fluorescence Core Imaging Center, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Byung-Gyu Kim
- Center for Genomic Integrity, Institute for Basic Science, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Woong Sun
- Department of Anatomy, Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Sung-Jin Jeong
- Research Group of Developmental Disorders and Rare Diseases, Korea Brain Research Institute (KBRI), Daegu, 41062, Republic of Korea
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
- Corresponding author.Research Group of Developmental Disorders and Rare Diseases, Korea Brain Research Institute (KBRI), Daegu, 41062, Republic of Korea.
| |
Collapse
|
9
|
Spatio-temporal dynamics enhance cellular diversity, neuronal function and further maturation of human cerebral organoids. Commun Biol 2023; 6:173. [PMID: 36788328 PMCID: PMC9926461 DOI: 10.1038/s42003-023-04547-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 02/02/2023] [Indexed: 02/16/2023] Open
Abstract
The bioengineerined and whole matured human brain organoids stand as highly valuable three-dimensional in vitro brain-mimetic models to recapitulate in vivo brain development, neurodevelopmental and neurodegenerative diseases. Various instructive signals affecting multiple biological processes including morphogenesis, developmental stages, cell fate transitions, cell migration, stem cell function and immune responses have been employed for generation of physiologically functional cerebral organoids. However, the current approaches for maturation require improvement for highly harvestable and functional cerebral organoids with reduced batch-to-batch variabilities. Here, we demonstrate two different engineering approaches, the rotating cell culture system (RCCS) microgravity bioreactor and a newly designed microfluidic platform (µ-platform) to improve harvestability, reproducibility and the survival of high-quality cerebral organoids and compare with those of traditional spinner and shaker systems. RCCS and µ-platform organoids have reached ideal sizes, approximately 95% harvestability, prolonged culture time with Ki-67 + /CD31 + /β-catenin+ proliferative, adhesive and endothelial-like cells and exhibited enriched cellular diversity (abundant neural/glial/ endothelial cell population), structural brain morphogenesis, further functional neuronal identities (glutamate secreting glutamatergic, GABAergic and hippocampal neurons) and synaptogenesis (presynaptic-postsynaptic interaction) during whole human brain development. Both organoids expressed CD11b + /IBA1 + microglia and MBP + /OLIG2 + oligodendrocytes at high levels as of day 60. RCCS and µ-platform organoids showing high levels of physiological fidelity a high level of physiological fidelity can serve as functional preclinical models to test new therapeutic regimens for neurological diseases and benefit from multiplexing.
Collapse
|
10
|
Cornelison C, Fadel S. Clickable Biomaterials for Modulating Neuroinflammation. Int J Mol Sci 2022; 23:8496. [PMID: 35955631 PMCID: PMC9369181 DOI: 10.3390/ijms23158496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 02/04/2023] Open
Abstract
Crosstalk between the nervous and immune systems in the context of trauma or disease can lead to a state of neuroinflammation or excessive recruitment and activation of peripheral and central immune cells. Neuroinflammation is an underlying and contributing factor to myriad neuropathologies including neurodegenerative diseases like Alzheimer's disease and Parkinson's disease; autoimmune diseases like multiple sclerosis; peripheral and central nervous system infections; and ischemic and traumatic neural injuries. Therapeutic modulation of immune cell function is an emerging strategy to quell neuroinflammation and promote tissue homeostasis and/or repair. One such branch of 'immunomodulation' leverages the versatility of biomaterials to regulate immune cell phenotypes through direct cell-material interactions or targeted release of therapeutic payloads. In this regard, a growing trend in biomaterial science is the functionalization of materials using chemistries that do not interfere with biological processes, so-called 'click' or bioorthogonal reactions. Bioorthogonal chemistries such as Michael-type additions, thiol-ene reactions, and Diels-Alder reactions are highly specific and can be used in the presence of live cells for material crosslinking, decoration, protein or cell targeting, and spatiotemporal modification. Hence, click-based biomaterials can be highly bioactive and instruct a variety of cellular functions, even within the context of neuroinflammation. This manuscript will review recent advances in the application of click-based biomaterials for treating neuroinflammation and promoting neural tissue repair.
Collapse
Affiliation(s)
- Chase Cornelison
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA;
| | | |
Collapse
|
11
|
Shen C, Huang G, Hu D, Zhao H. Brain extracellular matrix attenuates photodynamic cytotoxicity of glioma cells. Photodiagnosis Photodyn Ther 2022; 39:103008. [PMID: 35817370 DOI: 10.1016/j.pdpdt.2022.103008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 11/18/2022]
Abstract
Glioma is the most common tumor in the central nervous system, which is often accompanied by poor prognosis. Brain extracellular matrix (ECM) plays an important role in regulating the growth and migration of glioma. Photodynamic therapy (PDT) has been an effective method for the treatment of solid tumors by oxidative modifications in recent years, and ECM may have an impact on the cytotoxicity of photodynamic therapy. In this work, we prepared decellularized brain ECM by chemical method to investigate the influence of the photodynamic effect of glioma C6 cells. Compared with decellularized liver ECM, brain ECM reduces PDT cytotoxicity. By observing the content of reactive oxygen species produced by near-infrared light active indocyanine green in cells, it was found that ECM did not affect the production of reactive oxygen species. Therefore, it is speculated that brain ECM may enhance the oxidative stress adaptability of glioma cells through potential signal regulation, or protect photodynamic targeting biomolecules (such as proteins and other cellular components) from oxidation in PDT mediated by indocyanine green and 808 nm laser in glioma cells.
Collapse
Affiliation(s)
- Cong Shen
- Department of Geriatric, Dazhou Central Hospital, Dazhou, Sichuan, China
| | - Guoying Huang
- Department of Neurology, Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China
| | - Dan Hu
- Department of Geriatric, Dazhou Central Hospital, Dazhou, Sichuan, China
| | - Hongjian Zhao
- Department of Neurology, Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China.
| |
Collapse
|