1
|
Cao J, Dubrovskaya Y, Siegfried J, Decano A, Mazo D, Hochman S, Zacharioudakis IM, So J, Solomon S, Papadopoulos J, Marsh K. Treatment of Piperacillin-Tazobactam-Nonsusceptible/Ceftriaxone-Susceptible Infections With Carbapenem Versus Carbapenem-Sparing Antimicrobials. Open Forum Infect Dis 2023; 10:ofad262. [PMID: 37305841 PMCID: PMC10249260 DOI: 10.1093/ofid/ofad262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023] Open
Abstract
Background Escherichia coli and Klebsiella pneumoniae with a piperacillin-tazobactam-nonsusceptible/ceftriaxone-susceptible (TZP-NS/CRO-S) phenotype have been increasingly identified, with limited available literature evaluating treatment strategies. Methods This was a retrospective study of noncritically ill adults hospitalized between 2013 and 2021 and treated at least 48 hours for TZP-NS/CRO-S E coli or K pneumoniae infections. The primary composite endpoint included escalation to intensive care unit, infection- or treatment-related readmission, mortality, and infection recurrence. Outcomes were compared between groups who received carbapenem (CG) versus carbapenem-sparing agents (CSG) as targeted gram-negative therapy. Results Of 1062 patients screened, 200 were included (CG, n = 51; CSG, n = 149). Baseline characteristics, including Charlson Comorbidity Index (CCI; median [interquartile range], 6 [3-9] vs 6 [4-9]; P = .704), were similar between groups, except for more immunocompromised CG patients (29% vs 11%, P = .001). The most common infection sources were urinary (31% vs 57%, P = .002) and bloodstream (18% vs 17%, P = .887). Eighty-eight percent of the CG received meropenem, while 58% of the CSG received ceftriaxone as targeted therapy. There was no statistical difference in the primary endpoint between overall groups (27% vs 17%, P = .123), nor when stratified by infection source. More patients in the CSG switched to oral therapy (15 [29%] vs 100 [67%], P < .001). In multivariate analysis, CCI was an independent predictor of the primary outcome (odds ratio [OR], 1.199 [95% confidence interval, 1.074-1.340]; P = .001), while treatment with carbapenem-sparing therapy was not. Conclusions Our study did not find improved clinical outcomes with targeted carbapenem therapy for TZP-NS/CRO-S infections. Carbapenem-sparing agents may be considered to spare carbapenems in noncritically ill patients similar to those included in our cohort.
Collapse
Affiliation(s)
- John Cao
- Department of Pharmacy, NYU Langone Health, New York, New York, USA
| | | | - Justin Siegfried
- Department of Pharmacy, NYU Langone Health, New York, New York, USA
| | - Arnold Decano
- Department of Pharmacy, NYU Langone Health, New York, New York, USA
| | - Dana Mazo
- Division of Infectious Diseases, NYU Langone Health, New York, New York, USA
| | - Sarah Hochman
- Division of Infectious Diseases, NYU Langone Health, New York, New York, USA
| | | | - Jonathan So
- Department of Population Health, NYU Langone Health, New York, New York, USA
| | - Sadie Solomon
- Department of Infection Prevention and Control, NYU Langone Health, New York, New York, USA
| | | | - Kassandra Marsh
- Correspondence: Kassandra Marsh, PharmD, Department of Pharmacy, NYU Langone Health, 545 First Ave, SC2-097, New York, NY 10016 ()
| |
Collapse
|
2
|
Villodres AR, Benítez LG, Arroyo MJ, Méndez G, Mancera L, Domínguez AV, Jímenez JAL, Smani Y. Ultrasensitive and rapid identification of ESRI developer- and piperacillin/tazobactam-resistant Escherichia coli by the MALDIpiptaz test. Emerg Microbes Infect 2022; 11:2034-2044. [PMID: 35972021 PMCID: PMC9423838 DOI: 10.1080/22221751.2022.2113746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Background The excessive use of piperacillin/tazobactam (P/T) has promoted the emergence of P/T-resistant Enterobacterales. We reported that in Escherichia coli, P/T contributes to the development of extended-spectrum resistance to β-lactam/β-lactamase inhibitor (BL/BLI) (ESRI) in isolates that are P/T susceptible but have low-level resistance to BL/BLI. Currently, the detection of P/T resistance relying on conventional methods is time-consuming. To overcome this issue, we developed a cost-effective test based on MALDI-MS technology, called MALDIpiptaz, which aims to detect P/T resistance and ESRI developers in E. coli. Methods We used automated Clover MS Data Analysis software to analyse the protein profile spectra obtained by MALDI-MS from a collection of 248 E. coli isolates (91 P/T-resistant, 81 ESRI developers and 76 P/T-susceptible). This software allowed to preprocess all the spectra to build different peak matrices that were analysed by machine learning algorithms. Results We demonstrated that MALDIpiptaz can efficiently and rapidly (15 min) discriminate between P/T-resistant, ESRI developer and P/T-susceptible isolates and allowed the correct classification between ESRI developers from their isogenic resistance to P/T. Conclusion The combination of excellent performance and cost-effectiveness are all desirable attributes, allowing the MALDIpiptaz test to be a useful tool for the rapid determination of P/T resistance in clinically relevant E. coli isolates.
Collapse
Affiliation(s)
- Angel Rodríguez Villodres
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Virgen del Rocío University Hospital, Seville, Spain.,Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain
| | - Lydia Gálvez Benítez
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Virgen del Rocío University Hospital, Seville, Spain.,Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain
| | - Manuel J Arroyo
- Clover Bioanalytical Software, Av. del Conocimiento, 41, 18016 Granada, Spain
| | - Gema Méndez
- Clover Bioanalytical Software, Av. del Conocimiento, 41, 18016 Granada, Spain
| | - Luis Mancera
- Clover Bioanalytical Software, Av. del Conocimiento, 41, 18016 Granada, Spain
| | - Andrea Vila Domínguez
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Virgen del Rocío University Hospital, Seville, Spain.,Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain
| | - José Antonio Lepe Jímenez
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Virgen del Rocío University Hospital, Seville, Spain.,Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain
| | - Younes Smani
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Virgen del Rocío University Hospital, Seville, Spain.,Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain.,Department of Molecular Biology and Biochemical Engineering, Andalusian Center of Developmental Biology, CSIC, University of Pablo de Olavide, Seville, Spain
| |
Collapse
|
3
|
Hubbard ATM, Mason J, Roberts P, Parry CM, Corless C, van Aartsen J, Howard A, Bulgasim I, Fraser AJ, Adams ER, Roberts AP, Edwards T. Piperacillin/tazobactam resistance in a clinical isolate of Escherichia coli due to IS26-mediated amplification of bla TEM-1B. Nat Commun 2020; 11:4915. [PMID: 33004811 PMCID: PMC7530762 DOI: 10.1038/s41467-020-18668-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022] Open
Abstract
A phenotype of Escherichia coli and Klebsiella pneumoniae, resistant to piperacillin/tazobactam (TZP) but susceptible to carbapenems and 3rd generation cephalosporins, has emerged. The resistance mechanism associated with this phenotype has been identified as hyperproduction of the β-lactamase TEM. However, the mechanism of hyperproduction due to gene amplification is not well understood. Here, we report a mechanism of gene amplification due to a translocatable unit (TU) excising from an IS26-flanked pseudo-compound transposon, PTn6762, which harbours blaTEM-1B. The TU re-inserts into the chromosome adjacent to IS26 and forms a tandem array of TUs, which increases the copy number of blaTEM-1B, leading to TEM-1B hyperproduction and TZP resistance. Despite a significant increase in blaTEM-1B copy number, the TZP-resistant isolate does not incur a fitness cost compared to the TZP-susceptible ancestor. This mechanism of amplification of blaTEM-1B is an important consideration when using genomic data to predict susceptibility to TZP.
Collapse
MESH Headings
- Anti-Bacterial Agents/pharmacology
- Anti-Bacterial Agents/therapeutic use
- Chromosomes, Bacterial/genetics
- DNA Transposable Elements/genetics
- DNA, Bacterial/genetics
- Drug Resistance, Multiple, Bacterial/genetics
- Drug Therapy, Combination/methods
- Escherichia coli/drug effects
- Escherichia coli/genetics
- Escherichia coli/isolation & purification
- Escherichia coli Infections/drug therapy
- Escherichia coli Infections/microbiology
- Escherichia coli Proteins/genetics
- Gene Amplification
- Gene Expression Regulation, Bacterial
- Genome, Bacterial/genetics
- Humans
- Microbial Sensitivity Tests
- Piperacillin/pharmacology
- Piperacillin/therapeutic use
- Polymorphism, Restriction Fragment Length
- RNA, Ribosomal, 16S/genetics
- Tazobactam/pharmacology
- Tazobactam/therapeutic use
- Whole Genome Sequencing
- beta-Lactamases/genetics
Collapse
Affiliation(s)
- Alasdair T M Hubbard
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| | - Jenifer Mason
- Liverpool University Hospital Foundation Trust, Prescot Street, Liverpool, L7 8XP, UK
| | - Paul Roberts
- Liverpool University Hospital Foundation Trust, Prescot Street, Liverpool, L7 8XP, UK
- Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Building MA, Wulfruna Street, Wolverhampton, WV1 1LY, UK
| | - Christopher M Parry
- Alder Hey Children's NHS Foundation Trust, Eaton Road, Liverpool, L12 2AP, UK
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, L69 7BE, UK
- Clinical Sciences, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
- School of Tropical Medicine and Global Health, University of Nagasaki, Nagasaki, Japan
| | - Caroline Corless
- Liverpool University Hospital Foundation Trust, Prescot Street, Liverpool, L7 8XP, UK
| | - Jon van Aartsen
- Liverpool University Hospital Foundation Trust, Prescot Street, Liverpool, L7 8XP, UK
| | - Alex Howard
- Liverpool University Hospital Foundation Trust, Prescot Street, Liverpool, L7 8XP, UK
| | - Issra Bulgasim
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Alice J Fraser
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Emily R Adams
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Adam P Roberts
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Thomas Edwards
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| |
Collapse
|
4
|
Bloodstream Infection due to Piperacillin/Tazobactam Non-Susceptible, Cephalosporin-Susceptible Escherichia coli: A Missed Opportunity for De-Escalation of Therapy. Antibiotics (Basel) 2018; 7:antibiotics7040104. [PMID: 30513755 PMCID: PMC6316510 DOI: 10.3390/antibiotics7040104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/21/2018] [Accepted: 11/29/2018] [Indexed: 11/17/2022] Open
Abstract
An increasing number of reports describing Escherichia coli isolates with piperacillin/tazobactam resistance, despite retained cephalosporin susceptibility, suggest further emergence of this phenotypic resistance pattern. In this report, a patient with metastatic breast cancer presented to medical care after two days of chills, nausea, vomiting, reduced oral intake, and generalized weakness. Blood and urine cultures grew E. coli as identified by rapid diagnostics multiplex PCR and MALDI-TOF, respectively. The patient continued to manifest signs of sepsis with hypotension and tachypnea during the first three days of hospitalization despite empirical antimicrobial therapy with intravenous piperacillin/tazobactam. After in vitro antimicrobial susceptibility testing demonstrated a piperacillin/tazobactam minimal inhibitory concentration (MIC) of 64 and a ceftriaxone MIC of ≤1 mcg/mL, antimicrobial therapy was switched from intravenous piperacillin/tazobactam to ceftriaxone. All symptoms and signs of infection resolved within 48 h of starting ceftriaxone therapy. This report describes the clinical failure of piperacillin/tazobactam in the treatment of a bloodstream infection due to E. coli harboring a phenotypic resistance pattern of isolated piperacillin/tazobactam non-susceptibility. The case demonstrates the role of cephalosporins as potential treatment options and highlights the value of early de-escalation of antimicrobial therapy based on rapid diagnostic testing for microbial identification.
Collapse
|
5
|
Baker TM, Rogers W, Chavda KD, Westblade LF, Jenkins SG, Nicolau DP, Kreiswirth BN, Calfee DP, Satlin MJ. Epidemiology of Bloodstream Infections Caused by Escherichia coli and Klebsiella pneumoniae That Are Piperacillin-Tazobactam-Nonsusceptible but Ceftriaxone-Susceptible. Open Forum Infect Dis 2018; 5:ofy300. [PMID: 30568979 PMCID: PMC6290775 DOI: 10.1093/ofid/ofy300] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/14/2018] [Indexed: 12/22/2022] Open
Abstract
Background Piperacillin-tazobactam-nonsusceptible (TZP-NS) Enterobacteriaceae are typically also resistant to ceftriaxone. We recently encountered bacteremias due to Escherichia coli (Ec) and Klebsiella pneumoniae (Kp) that were TZP-NS but ceftriaxone-susceptible (CRO-S). Methods We reviewed all Ec and Kp bacteremias from 2011 to 2015 at our center and assessed the prevalence, antimicrobial susceptibilities, genetic profiles, patient characteristics, treatments, and outcomes of TZP-NS/CRO-S infections. We identified risk factors for TZP-NS/CRO-S infections compared with Ec and Kp bacteremias that were TZP-S and CRO-S (Control Group 1) and compared outcomes of patients with TZP-NS/CRO-S bacteremias, Control Group 1, and patients bacteremic with extended-spectrum β-lactamase (ESBL)–producing Ec and Kp. Results There were 1857 Ec and Kp bacteremia episodes, of which 78 (4.2%) were TZP-NS/CRO-S (Ec: 50/1227 [4.1%]; Kp: 28/630 [4.4%]). All TZP-NS/CRO-S isolates were also ampicillin-sulbactam-NS. Of 32 TZP-NS/CRO-S isolates that were sequenced, 28 (88%) harbored blaTEM-1 or blaSHV-1, none had an ESBL or AmpC β-lactamase gene, and many sequence types were represented. Independent risk factors for TZP-NS/CRO-S bacteremia were exposure to β-lactam/β-lactamase inhibitors (BL/BLIs; adjusted odds ratio [aOR], 5.5; P < .001) and cephalosporins (aOR, 3.0; P = .04). Thirty-day mortality after TZP-NS/CRO-S bacteremia was 25%, which was similar to control groups and was similar in patients treated empirically with BL/BLIs compared with those treated with cephalosporins or carbapenems. Targeted therapy with cephalosporins did not yield a higher 30-day mortality rate than carbapenem therapy. Conclusions TZP-NS/CRO-S Ec and Kp are emerging causes of bacteremia, and further research is needed to better understand the epidemiology, resistance mechanisms, and clinical impact of these strains.
Collapse
Affiliation(s)
- Thomas M Baker
- Division of Infectious Diseases, Weill Cornell Medicine, New York, New York.,Clinical Immunology, Janssen Research & Development, Spring House, Pennsylvania
| | - Wesley Rogers
- Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Kalyan D Chavda
- Public Health Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Lars F Westblade
- Division of Infectious Diseases, Weill Cornell Medicine, New York, New York.,Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Stephen G Jenkins
- Division of Infectious Diseases, Weill Cornell Medicine, New York, New York.,Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - David P Nicolau
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, Connecticut
| | - Barry N Kreiswirth
- Public Health Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey
| | - David P Calfee
- Division of Infectious Diseases, Weill Cornell Medicine, New York, New York
| | - Michael J Satlin
- Division of Infectious Diseases, Weill Cornell Medicine, New York, New York
| |
Collapse
|