1
|
Yang X, Prakash M, Brumley DR. Escape motility of multicellular magnetotactic prokaryotes. J R Soc Interface 2024; 21:20240310. [PMID: 39410817 PMCID: PMC11480751 DOI: 10.1098/rsif.2024.0310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/09/2024] [Accepted: 09/11/2024] [Indexed: 10/19/2024] Open
Abstract
Microorganisms often actively respond to multiple external stimuli to navigate toward their preferred niches. For example, unicellular magnetotactic bacteria integrate both oxygen sensory information and the Earth's geomagnetic field to help them locate anoxic conditions in a process known as magneto-aerotaxis. However, for multicellular magnetotactic prokaryotes (MMPs), the colonial structure of 4-16 cells places fundamental constraints on collective sensing, colony motility and directed swimming. To investigate how colonies navigate environments with multiple stimuli, we performed microfluidic experiments of MMPs with opposing magnetic fields and oxygen gradients. These experiments reveal unusual back-and-forth excursions called 'escape motility', in which colonies shuttle along magnetic field lines, punctuated by abrupt-yet highly coordinated-changes in collective ciliary beating. Through cell tracking and numerical simulations, we demonstrate that escape motility can arise through a simple magneto-aerotaxis mechanism, which includes the effect of magnetic torques and chemical sensing. At sufficiently high densities of MMPs, we observe the formation of dynamic crystal structures, whose stability is governed by the magnetic field strength and near-field hydrodynamic interactions. The results shed light on how some of the earliest multicellular organisms navigate complex physico-chemical landscapes.
Collapse
Affiliation(s)
- Xinyi Yang
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria3010, Australia
| | - Manu Prakash
- Department of Bioengineering, Biology and Oceans, Stanford University, Stanford, CA, USA
| | - Douglas R. Brumley
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria3010, Australia
| |
Collapse
|
2
|
Hu X, Chen W, Lin J, Nie D, Zhu Z, Lin P. The motion of micro-swimmers over a cavity in a micro-channel. SOFT MATTER 2024; 20:2789-2803. [PMID: 38445957 DOI: 10.1039/d3sm01589k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
This article combines the lattice Boltzmann method (LBM) with the squirmer model to investigate the motion of micro-swimmers in a channel-cavity system. The study analyses various influential factors, including the value of the squirmer-type factor (β), the swimming Reynolds number (Rep), the size of the cavity, initial position and particle size on the movement of micro-swimmers within the channel-cavity system. We simultaneously studied three types of squirmer models, Puller (β > 0), Pusher (β < 0), and Neutral (β = 0) swimmers. The findings reveal that the motion of micro-swimmers is determined by the value of β and Rep, which can be classified into six distinct motion modes. For Puller and Pusher, when the β value is constant, an increase in Rep will lead to transition in the motion mode. Moreover, the appropriate depth of cavity within the channel-cavity system plays a crucial role in capturing and separating Neutral swimmers. This study, for the first time, explores the effect of complex channel-cavity systems on the behaviour of micro-swimmers and highlights their separation and capture ability. These findings offer novel insights for the design and enhancement of micro-channel structures in achieving efficient separation and capture of micro-swimmers.
Collapse
Affiliation(s)
- Xiao Hu
- Key Laboratory of Fluid Transmission Technology of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Weijin Chen
- Key Laboratory of Fluid Transmission Technology of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Jianzhong Lin
- Zhejiang Provincial Engineering Research Center for the Safety of Pressure Vessel and Pipeline, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Deming Nie
- Institute of Fluid Mechanics, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| | - Zuchao Zhu
- Key Laboratory of Fluid Transmission Technology of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Peifeng Lin
- Key Laboratory of Fluid Transmission Technology of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| |
Collapse
|
3
|
Ishimoto K, Gaffney EA, Smith DJ. Squirmer hydrodynamics near a periodic surface topography. Front Cell Dev Biol 2023; 11:1123446. [PMID: 37123410 PMCID: PMC10133482 DOI: 10.3389/fcell.2023.1123446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/15/2023] [Indexed: 05/02/2023] Open
Abstract
The behaviour of microscopic swimmers has previously been explored near large-scale confining geometries and in the presence of very small-scale surface roughness. Here, we consider an intermediate case of how a simple microswimmer, the tangential spherical squirmer, behaves adjacent to singly and doubly periodic sinusoidal surface topographies that spatially oscillate with an amplitude that is an order of magnitude less than the swimmer size and wavelengths that are also within an order of magnitude of this scale. The nearest neighbour regularised Stokeslet method is used for numerical explorations after validating its accuracy for a spherical tangential squirmer that swims stably near a flat surface. The same squirmer is then introduced to different surface topographies. The key governing factor in the resulting swimming behaviour is the size of the squirmer relative to the surface topography wavelength. For instance, directional guidance is not observed when the squirmer is much larger, or much smaller, than the surface topography wavelength. In contrast, once the squirmer size is on the scale of the topography wavelength, limited guidance is possible, often with local capture in the topography troughs. However, complex dynamics can also emerge, especially when the initial configuration is not close to alignment along topography troughs or above topography crests. In contrast to sensitivity in alignment and topography wavelength, reductions in the amplitude of the surface topography or variations in the shape of the periodic surface topography do not have extensive impacts on the squirmer behaviour. Our findings more generally highlight that the numerical framework provides an essential basis to elucidate how swimmers may be guided by surface topography.
Collapse
Affiliation(s)
- Kenta Ishimoto
- Research Institute for Mathematical Sciences, Kyoto University, Kyoto, Japan
- *Correspondence: Kenta Ishimoto,
| | - Eamonn A. Gaffney
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | - David J. Smith
- School of Mathematics, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
4
|
Maity R, Burada PS. Near- and far-field hydrodynamic interaction of two chiral squirmers. Phys Rev E 2022; 106:054613. [PMID: 36559415 DOI: 10.1103/physreve.106.054613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 10/28/2022] [Indexed: 06/17/2023]
Abstract
Hydrodynamic interaction strongly influences the collective behavior of microswimmers. With this work, we study the behavior of two hydrodynamically interacting self-propelled chiral swimmers in the low Reynolds number regime, considering both the near- and far-field interactions. We use the chiral squirmer model [see Burada et al., Phys. Rev. E 105, 024603 (2022)2470-004510.1103/PhysRevE.105.024603], a spherically shaped body with nonaxisymmetric surface slip velocity, which generalizes the well-known squirmer model. The previous work was restricted only to the case, while the far-field hydrodynamic interaction was influential among the swimmers. It did not approach the scenario while both the swimmers are very close and lubrication effects become dominant. We calculate the lubrication force between the swimmers when they are very close. By varying the slip coefficients and the initial configuration of the swimmers, we investigate their hydrodynamic behavior. In the presence of lubrication force, the swimmers either repel each other or exhibit bounded motion where the distance between the swimmers alters periodically. We identify the possible behaviors exhibited by the chiral squirmers, such as monotonic divergence, divergence, and bounded, as was found in the previous study. However, in the current study, we observe that both the monotonic convergence and the convergence states are converted into divergence states due to the arising lubrication effects. The lubrication force favors the bounded motion in some parameter regimes. This study helps to understand the collective behavior of dense suspension of ciliated microorganisms and artificial swimmers.
Collapse
Affiliation(s)
- Ruma Maity
- Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - P S Burada
- Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
5
|
Turk G, Singh R, Adhikari R. Stokes traction on an active particle. Phys Rev E 2022; 106:014601. [PMID: 35974554 DOI: 10.1103/physreve.106.014601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
The mechanics and statistical mechanics of a suspension of active particles are determined by the traction (force per unit area) on their surfaces. Here we present an exact solution of the direct boundary integral equation for the traction on a spherical active particle in an imposed slow viscous flow. Both single- and double-layer integral operators can be simultaneously diagonalized in a basis of irreducible tensorial spherical harmonics and the solution, thus, can be presented as an infinite number of linear relations between the harmonic coefficients of the traction and the velocity at the boundary of the particle. These generalize Stokes laws for the force and torque. Using these relations we obtain simple expressions for physically relevant quantities such as the symmetric-irreducible dipole acting on, or the power dissipated by, an active particle in an arbitrary imposed flow. We further present an explicit expression for the variance of the Brownian contributions to the traction on an active colloid in a thermally fluctuating fluid.
Collapse
Affiliation(s)
- Günther Turk
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| | - Rajesh Singh
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
- Department of Physics, IIT Madras, Chennai 600036, India
| | - Ronojoy Adhikari
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
- The Institute of Mathematical Sciences-HBNI, CIT Campus, Chennai 600113, India
| |
Collapse
|
6
|
Burada PS, Maity R, Jülicher F. Hydrodynamics of chiral squirmers. Phys Rev E 2022; 105:024603. [PMID: 35291102 DOI: 10.1103/physreve.105.024603] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Many microorganisms take a chiral path while swimming in an ambient fluid. In this paper we study the combined behavior of two chiral swimmers using the well-known squirmer model taking into account chiral asymmetries. In contrast to the simple squirmer model, which has an axisymmetric distribution of slip velocity, the chiral squirmer has additional asymmetries in the surface slip, which contribute to both translations and rotations of the motion. As a result, swimming trajectories can become helical and chiral asymmetries arise in the flow patterns. We study the swimming trajectories of a pair of chiral squirmers that interact hydrodynamically. This interaction can lead to attraction and repulsion, and in some cases even to bounded states where the swimmers continue to periodically orbit around a common average trajectory. Such bound states are a signature of the chiral nature of the swimmers. Our study could be relevant to the collective movements of ciliated microorganisms.
Collapse
Affiliation(s)
- P S Burada
- Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - R Maity
- Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - F Jülicher
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, 01187 Dresden, Germany
| |
Collapse
|
7
|
Boselli F, Jullien J, Lauga E, Goldstein RE. Fluid Mechanics of Mosaic Ciliated Tissues. PHYSICAL REVIEW LETTERS 2021; 127:198102. [PMID: 34797132 PMCID: PMC7616087 DOI: 10.1103/physrevlett.127.198102] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
In tissues as diverse as amphibian skin and the human airway, the cilia that propel fluid are grouped in sparsely distributed multiciliated cells (MCCs). We investigate fluid transport in this "mosaic" architecture, with emphasis on the trade-offs that may have been responsible for its evolutionary selection. Live imaging of MCCs in embryos of the frog Xenopus laevis shows that cilia bundles behave as active vortices that produce a flow field accurately represented by a local force applied to the fluid. A coarse-grained model that self-consistently couples bundles to the ambient flow reveals that hydrodynamic interactions between MCCs limit their rate of work so that they best shear the tissue at a finite but low area coverage, a result that mirrors findings for other sparse distributions such as cell receptors and leaf stomata.
Collapse
Affiliation(s)
- Francesco Boselli
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge CB3 0WA, United Kingdom
| | - Jerome Jullien
- Wellcome Trust/Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, United Kingdom
- Department of Zoology, University of Cambridge, Cambridge CB2 1QN, United Kingdom
- Inserm, Nantes Université, CHU Nantes, CRTI-UMR 1064, F-44000 Nantes, France
| | - Eric Lauga
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge CB3 0WA, United Kingdom
| | - Raymond E. Goldstein
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge CB3 0WA, United Kingdom
| |
Collapse
|
8
|
Rode S, Elgeti J, Gompper G. Multi-ciliated microswimmers-metachronal coordination and helical swimming. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:76. [PMID: 34101070 PMCID: PMC8187229 DOI: 10.1140/epje/s10189-021-00078-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/07/2021] [Indexed: 05/05/2023]
Abstract
The dynamics and motion of multi-ciliated microswimmers with a spherical body and a small number N (with [Formula: see text]) of cilia with length comparable to the body radius, is investigated by mesoscale hydrodynamics simulations. A metachronal wave is imposed for the cilia beat, for which the wave vector has both a longitudinal and a latitudinal component. The dynamics and motion is characterized by the swimming velocity, its variation over the beat cycle, the spinning velocity around the main body axis, as well as the parameters of the helical trajectory. Our simulation results show that the microswimmer motion strongly depends on the latitudinal wave number and the longitudinal phase lag. The microswimmers are found to swim smoothly and usually spin around their own axis. Chirality of the metachronal beat pattern generically generates helical trajectories. In most cases, the helices are thin and stretched, i.e., the helix radius is about an order of magnitude smaller than the pitch. The rotational diffusion of the microswimmer is significantly smaller than the passive rotational diffusion of the body alone, which indicates that the extended cilia contribute strongly to the hydrodynamic radius. The swimming velocity is found to increase with the cilia number N with a slightly sublinear power law, consistent with the behavior expected from the dependence of the transport velocity of planar cilia arrays on the cilia separation.
Collapse
Affiliation(s)
- Sebastian Rode
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Jens Elgeti
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Gerhard Gompper
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
9
|
Gallagher MT, Smith DJ. The art of coarse Stokes: Richardson extrapolation improves the accuracy and efficiency of the method of regularized stokeslets. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210108. [PMID: 34084547 PMCID: PMC8150023 DOI: 10.1098/rsos.210108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The method of regularized stokeslets is widely used in microscale biological fluid dynamics due to its ease of implementation, natural treatment of complex moving geometries, and removal of singular functions to integrate. The standard implementation of the method is subject to high computational cost due to the coupling of the linear system size to the numerical resolution required to resolve the rapidly varying regularized stokeslet kernel. Here, we show how Richardson extrapolation with coarse values of the regularization parameter is ideally suited to reduce the quadrature error, hence dramatically reducing the storage and solution costs without loss of accuracy. Numerical experiments on the resistance and mobility problems in Stokes flow support the analysis, confirming several orders of magnitude improvement in accuracy and/or efficiency.
Collapse
Affiliation(s)
- M. T. Gallagher
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham, UK
| | - D. J. Smith
- School of Mathematics, University of Birmingham, Birmingham, UK
| |
Collapse
|
10
|
Nganguia H, Zhu L, Palaniappan D, Pak OS. Squirming in a viscous fluid enclosed by a Brinkman medium. Phys Rev E 2021; 101:063105. [PMID: 32688621 DOI: 10.1103/physreve.101.063105] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/27/2020] [Indexed: 12/24/2022]
Abstract
Cell motility plays important roles in a range of biological processes, such as reproduction and infections. Studies have hypothesized that the ulcer-causing bacterium Helicobacter pylori invades the gastric mucus layer lining the stomach by locally turning nearby gel into sol, thereby enhancing its locomotion through the biological barrier. In this work, we present a minimal theoretical model to investigate how heterogeneity created by a swimmer affects its own locomotion. As a generic locomotion model, we consider the swimming of a spherical squirmer in a purely viscous fluid pocket (representing the liquified or degelled region) surrounded by a Brinkman porous medium (representing the mucus gel). The use of the squirmer model enables an exact, analytical solution to this hydrodynamic problem. We obtain analytical expressions for the swimming speed, flow field, and power dissipation of the swimmer. Depending on the details of surface velocities and fluid properties, our results reveal the existence of a minimum threshold size of mucus gel that a swimmer needs to liquify in order to gain any enhancement in swimming speed. The threshold size can be as much as approximately 30% of the swimmer size. We contrast these predictions with results from previous models and highlight the significant role played by the details of surface actuations. In addition to their biological implications, these results could also inform the design of artificial microswimmers that can penetrate into biological gels for more effective drug delivery.
Collapse
Affiliation(s)
- Herve Nganguia
- Department of Mathematical and Computer Sciences, Indiana University of Pennsylvania, Indiana, Pennsylvania 15705, USA
| | - Lailai Zhu
- Department of Mechanical Engineering, National University of Singapore, Singapore 117575
| | - D Palaniappan
- Department of Mathematics and Statistics, Texas A&M University, Corpus Christi, Texas 78412, USA
| | - On Shun Pak
- Department of Mechanical Engineering, Santa Clara University, Santa Clara, California 95053, USA
| |
Collapse
|
11
|
Nasouri B, Vilfan A, Golestanian R. Minimum Dissipation Theorem for Microswimmers. PHYSICAL REVIEW LETTERS 2021; 126:034503. [PMID: 33543965 DOI: 10.1103/physrevlett.126.034503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
We derive a theorem for the lower bound on the energy dissipation rate by a rigid surface-driven active microswimmer of arbitrary shape in a fluid at a low Reynolds number. We show that, for any swimmer, the minimum dissipation at a given velocity can be expressed in terms of the resistance tensors of two passive bodies of the same shape with a no-slip and perfect-slip boundary. To achieve the absolute minimum dissipation, the optimal swimmer needs a surface velocity profile that corresponds to the flow around the perfect-slip body, and a propulsive force density that corresponds to the no-slip body. Using this theorem, we propose an alternative definition of the energetic efficiency of microswimmers that, unlike the commonly used Lighthill efficiency, can never exceed unity. We validate the theory by calculating the efficiency limits of spheroidal swimmers.
Collapse
Affiliation(s)
- Babak Nasouri
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen, Germany
| | - Andrej Vilfan
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen, Germany
- Jožef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Ramin Golestanian
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen, Germany
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
| |
Collapse
|
12
|
Swimming microorganisms acquire optimal efficiency with multiple cilia. Proc Natl Acad Sci U S A 2020; 117:30201-30207. [PMID: 33199601 DOI: 10.1073/pnas.2011146117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Planktonic microorganisms are ubiquitous in water, and their population dynamics are essential for forecasting the behavior of global aquatic ecosystems. Their population dynamics are strongly affected by these organisms' motility, which is generated by their hair-like organelles, called cilia or flagella. However, because of the complexity of ciliary dynamics, the precise role of ciliary flow in microbial life remains unclear. Here, we have used ciliary hydrodynamics to show that ciliates acquire the optimal propulsion efficiency. We found that ciliary flow highly resists an organism's propulsion and that the swimming velocity rapidly decreases with body size, proportional to the power of minus two. Accordingly, the propulsion efficiency decreases as the cube of body length. By increasing the number of cilia, however, efficiency can be significantly improved, up to 100-fold. We found that there exists an optimal number density of cilia, which provides the maximum propulsion efficiency for all ciliates. The propulsion efficiency in this case decreases inversely proportionally to body length. Our estimated optimal density of cilia corresponds to those of actual microorganisms, including species of ciliates and microalgae, which suggests that now-existing motile ciliates and microalgae have survived by acquiring the optimal propulsion efficiency. These conclusions are helpful for better understanding the ecology of microorganisms, such as the energetic costs and benefits of multicellularity in Volvocaceae, as well as for the optimal design of artificial microswimmers.
Collapse
|
13
|
Mannan FO, Jarvela M, Leiderman K. Minimal model of the hydrodynamical coupling of flagella on a spherical body with application to Volvox. Phys Rev E 2020; 102:033114. [PMID: 33075899 DOI: 10.1103/physreve.102.033114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 07/22/2020] [Indexed: 11/07/2022]
Abstract
Flagella are hairlike appendages attached to microorganisms that allow the organisms to traverse their fluid environment. The algae Volvox are spherical swimmers with thousands of individual flagella on their surface, and their coordination is not fully understood. In this work, a previously developed minimal model of flagella synchronization is extended to the outer surface of a sphere submerged in a fluid. Each beating flagellum tip is modeled as a small sphere, elastically bound to a circular orbit just above the spherical surface and a regularized image system for Stokes flow outside of a sphere is used to enforce the no-slip condition. Biologically relevant distributions of rotors results in a rapidly developing and robust symplectic metachronal wave traveling from the anterior to the posterior of the spherical Volvox body.
Collapse
Affiliation(s)
- Forest O Mannan
- Mathematics & Computer Science Department, Western Colorado University, 1 Western Way, Gunnison, Colorado 81231, USA
| | - Miika Jarvela
- Department of Applied Mathematics and Statistics, Colorado School of Mines, 1500 Illinois St., Golden, Colorado 80401, USA
| | - Karin Leiderman
- Department of Applied Mathematics and Statistics, Colorado School of Mines, 1500 Illinois St., Golden, Colorado 80401, USA
| |
Collapse
|
14
|
Gallagher MT, Smith DJ. Passively parallel regularized stokeslets. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20190528. [PMID: 32762431 PMCID: PMC7422872 DOI: 10.1098/rsta.2019.0528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Stokes flow, discussed by G.G. Stokes in 1851, describes many microscopic biological flow phenomena, including cilia-driven transport and flagellar motility; the need to quantify and understand these flows has motivated decades of mathematical and computational research. Regularized stokeslet methods, which have been used and refined over the past 20 years, offer significant advantages in simplicity of implementation, with a recent modification based on nearest-neighbour interpolation providing significant improvements in efficiency and accuracy. Moreover this method can be implemented with the majority of the computation taking place through built-in linear algebra, entailing that state-of-the-art hardware and software developments in the latter, in particular multicore and GPU computing, can be exploited through minimal modifications ('passive parallelism') to existing Matlab computer code. Hence, and with widely available GPU hardware, significant improvements in the efficiency of the regularized stokeslet method can be obtained. The approach is demonstrated through computational experiments on three model biological flows: undulatory propulsion of multiple Caenorhabditis elegans, simulation of progression and transport by multiple sperm in a geometrically confined region, and left-right symmetry breaking particle transport in the ventral node of the mouse embryo. In general an order-of-magnitude improvement in efficiency is observed. This development further widens the complexity of biological flow systems that are accessible without the need for extensive code development or specialist facilities. This article is part of the theme issue 'Stokes at 200 (part 2)'.
Collapse
Affiliation(s)
- Meurig T. Gallagher
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham B15 2TT, UK
- Institute for Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, UK
- e-mail:
| | - David J. Smith
- Institute for Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, UK
- School of Mathematics, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
15
|
Zantop AW, Stark H. Squirmer rods as elongated microswimmers: flow fields and confinement. SOFT MATTER 2020; 16:6400-6412. [PMID: 32582901 DOI: 10.1039/d0sm00616e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Microswimmers or active elements, such as bacteria and active filaments, have an elongated shape, which determines their individual and collective dynamics. There is still a need to identify what role long-range hydrodynamic interactions play in their fascinating dynamic structure formation. We construct rods of different aspect ratios using several spherical squirmer model swimmers. With the help of the mesoscale simulation method of multi-particle collision dynamics we analyze the flow fields of these squirmer rods both in a bulk fluid and in Hele-Shaw geometries of different slab widths. Based on the hydrodynamic multipole expansion either for bulk or confinement between two parallel plates, we categorize the different multipole contributions of neutral as well as pusher-type squirmer rods. We demonstrate how confinement alters the radial decay of the flow fields for a given force or source multipole moment compared to the bulk fluid.
Collapse
Affiliation(s)
- Arne W Zantop
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany.
| | | |
Collapse
|
16
|
Fadda F, Molina JJ, Yamamoto R. Dynamics of a chiral swimmer sedimenting on a flat plate. Phys Rev E 2020; 101:052608. [PMID: 32575256 DOI: 10.1103/physreve.101.052608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
Three-dimensional simulations with fully resolved hydrodynamics are performed to study the dynamics of a single squirmer with and without gravity to clarify its motion in the vicinity of a flat plate. In the absence of gravity and chirality, the usual dynamics of a squirmer near a wall are recovered. The introduction of chirality modifies the swimming motion of squirmers, adding a component of motion in the third direction. When sedimentation is considered, different dynamics emerge for different gravity strength regimes. In a moderate gravity regime, neutral squirmers and pullers eventually stop moving and reorient in a direction perpendicular to the plate; by contrast, pushers exhibit continuous motion in a tilted direction. In the strong gravity regime, all squirmers sediment and reorient perpendicular to the plate. In this study, chirality is introduced to model realistic microswimmers, and its crucial effects on the nature of squirmer trajectories, which change from straight to circular, are discussed.
Collapse
Affiliation(s)
- Federico Fadda
- Department of Chemical Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - John Jairo Molina
- Department of Chemical Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Ryoichi Yamamoto
- Department of Chemical Engineering, Kyoto University, Kyoto 615-8510, Japan
| |
Collapse
|
17
|
Pöhnl R, Popescu MN, Uspal WE. Axisymmetric spheroidal squirmers and self-diffusiophoretic particles. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:164001. [PMID: 31801127 DOI: 10.1088/1361-648x/ab5edd] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We study, by means of an exact analytical solution, the motion of a spheroidal, axisymmetric squirmer in an unbounded fluid, as well as the low Reynolds number hydrodynamic flow associated to it. In contrast to the case of a spherical squirmer-for which, e.g. the velocity of the squirmer and the magnitude of the stresslet associated with the flow induced by the squirmer are respectively determined by the amplitudes of the first two slip ('squirming') modes-for the spheroidal squirmer each squirming mode either contributes to the velocity, or contributes to the stresslet. The results are straightforwardly extended to the self-phoresis of axisymmetric, spheroidal, chemically active particles in the case when the phoretic slip approximation holds.
Collapse
Affiliation(s)
- R Pöhnl
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569 Stuttgart, Germany
- IVth Institute for Theoretical Physics, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
- Department of Mechanical Engineering, University of Hawai'i at Manoa, 2540 Dole Street Holmes 302 Honolulu, HI 96822, United States of America
| | - M N Popescu
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569 Stuttgart, Germany
| | - W E Uspal
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569 Stuttgart, Germany
- IVth Institute for Theoretical Physics, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
- Department of Mechanical Engineering, University of Hawai'i at Manoa, 2540 Dole Street Holmes 302 Honolulu, HI 96822, United States of America
| |
Collapse
|
18
|
Bolitho A, Singh R, Adhikari R. Periodic Orbits of Active Particles Induced by Hydrodynamic Monopoles. PHYSICAL REVIEW LETTERS 2020; 124:088003. [PMID: 32167321 DOI: 10.1103/physrevlett.124.088003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/05/2020] [Indexed: 06/10/2023]
Abstract
Terrestrial experiments on active particles, such as Volvox, involve gravitational forces, torques and accompanying monopolar fluid flows. Taking these into account, we analyze the dynamics of a pair of self-propelling, self-spinning active particles between widely separated parallel planes. Neglecting flow reflected by the planes, the dynamics of orientation and horizontal separation is symplectic, with a Hamiltonian exactly determining limit cycle oscillations. Near the bottom plane, gravitational torque damps and reflected flow excites this oscillator, sustaining a second limit cycle that can be perturbatively related to the first. Our work provides a theory for dancing Volvox and highlights the importance of monopolar flow in active matter.
Collapse
Affiliation(s)
- Austen Bolitho
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Cambridge CB3 0WA, United Kingdom
| | - Rajesh Singh
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Cambridge CB3 0WA, United Kingdom
| | - R Adhikari
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Cambridge CB3 0WA, United Kingdom
- The Institute of Mathematical Sciences-HBNI, CIT Campus, Chennai 600113, India
| |
Collapse
|
19
|
Marinković M, Berger J, Jékely G. Neuronal coordination of motile cilia in locomotion and feeding. Philos Trans R Soc Lond B Biol Sci 2019; 375:20190165. [PMID: 31884921 PMCID: PMC7017327 DOI: 10.1098/rstb.2019.0165] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Efficient ciliary locomotion and transport require the coordination of motile cilia. Short-range coordination of ciliary beats can occur by biophysical mechanisms. Long-range coordination across large or disjointed ciliated fields often requires nervous system control and innervation of ciliated cells by ciliomotor neurons. The neuronal control of cilia is best understood in invertebrate ciliated microswimmers, but similar mechanisms may operate in the vertebrate body. Here, we review how the study of aquatic invertebrates contributed to our understanding of the neuronal control of cilia. We summarize the anatomy of ciliomotor systems and the physiological mechanisms that can alter ciliary activity. We also discuss the most well-characterized ciliomotor system, that of the larval annelid Platynereis. Here, pacemaker neurons drive the rhythmic activation of cholinergic and serotonergic ciliomotor neurons to induce ciliary arrests and beating. The Platynereis ciliomotor neurons form a distinct part of the larval nervous system. Similar ciliomotor systems likely operate in other ciliated larvae, such as mollusc veligers. We discuss the possible ancestry and conservation of ciliomotor circuits and highlight how comparative experimental approaches could contribute to a better understanding of the evolution and function of ciliary systems. This article is part of the Theo Murphy meeting issue ‘Unity and diversity of cilia in locomotion and transport’.
Collapse
Affiliation(s)
- Milena Marinković
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Jürgen Berger
- Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Gáspár Jékely
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
20
|
Stability of a Dumbbell Micro-Swimmer. MICROMACHINES 2019; 10:mi10010033. [PMID: 30621046 PMCID: PMC6356347 DOI: 10.3390/mi10010033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 11/20/2018] [Indexed: 12/28/2022]
Abstract
A squirmer model achieves propulsion by generating surface squirming velocities. This model has been used to analyze the movement of micro-swimmers, such as microorganisms and Janus particles. Although squirmer motion has been widely investigated, motions of two connected squirmers, i.e., a dumbbell squirmer, remain to be clarified. The stable assembly of multiple micro-swimmers could be a key technology for future micromachine applications. Therefore, in this study, we investigated the swimming behavior and stability of a dumbbell squirmer. We first examined far-field stability through linear stability analysis, and found that stable forward swimming could not be achieved by a dumbbell squirmer in the far field without the addition of external torque. We then investigated the swimming speed of a dumbbell squirmer connected by a short rigid rod using a boundary element method. Finally, we investigated the swimming stability of a dumbbell squirmer connected by a spring. Our results demonstrated that stable side-by-side swimming can be achieved by pullers. When the aft squirmer was a strong pusher, fore and aft swimming were stable and swimming speed increased significantly. The findings of this study will be useful for the future design of assembled micro-swimmers.
Collapse
|
21
|
Zöttl A, Stark H. Simulating squirmers with multiparticle collision dynamics. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2018; 41:61. [PMID: 29766348 DOI: 10.1140/epje/i2018-11670-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
Multiparticle collision dynamics is a modern coarse-grained simulation technique to treat the hydrodynamics of Newtonian fluids by solving the Navier-Stokes equations. Naturally, it also includes thermal noise. Initially it has been applied extensively to spherical colloids or bead-spring polymers immersed in a fluid. Here, we review and discuss the use of multiparticle collision dynamics for studying the motion of spherical model microswimmers called squirmers moving in viscous fluids.
Collapse
Affiliation(s)
- Andreas Zöttl
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, OX1 3NP, Oxford, UK.
- Institute for Theoretical Physics, Technische Universität Berlin, Hardenbergstr. 36, 10623, Berlin, Germany.
| | - Holger Stark
- Institute for Theoretical Physics, Technische Universität Berlin, Hardenbergstr. 36, 10623, Berlin, Germany
| |
Collapse
|
22
|
Martindale JD, Fu HC. Autonomously responsive pumping by a bacterial flagellar forest: A mean-field approach. Phys Rev E 2018; 96:033107. [PMID: 29346873 DOI: 10.1103/physreve.96.033107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Indexed: 11/07/2022]
Abstract
This study is motivated by a microfluidic device that imparts a magnetic torque on an array of bacterial flagella. Bacterial flagella can transform their helical geometry autonomously in response to properties of the background fluid, which provides an intriguing mechanism allowing their use as an engineered element for the regulation or transport of chemicals in microscale applications. The synchronization of flagellar phase has been widely studied in biological contexts, but here we examine the synchronization of flagellar tilt, which is necessary for effective pumping. We first examine the effects of helical geometry and tilt on the pumping flows generated by a single rotating flagellum. Next, we explore a mean-field model for an array of helical flagella to understand how collective tilt arises and influences pumping. The mean-field methodology allows us to take into account possible phase differences through a time-averaging procedure and to model an infinite array of flagella. We find array separation distances, magnetic field strengths, and rotation frequencies that produce nontrivial self-consistent pumping solutions. For individual flagella, pumping is reversed when helicity or rotation is reversed; in contrast, when collective effects are included, self-consistent tilted pumping solutions become untilted nonpumping solutions when helicity or rotation is reversed.
Collapse
Affiliation(s)
- James D Martindale
- Department of Mechanical Engineering, University of Utah, Salt Lake City, Utah, USA
| | - Henry C Fu
- Department of Mechanical Engineering, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
23
|
Brumley DR, Bruot N, Kotar J, Goldstein RE, Cicuta P, Polin M. Long-range interactions, wobbles, and phase defects in chains of model cilia. PHYSICAL REVIEW FLUIDS 2016; 1:081201. [PMID: 30123853 PMCID: PMC6097603 DOI: 10.1103/physrevfluids.1.081201] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Eukaryotic cilia and flagella are chemo-mechanical oscillators capable of generating long-range coordinated motions known as metachronal waves. Pair synchronization is a fundamental requirement for these collective dynamics, but it is generally not sufficient for collective phase-locking, chiefly due to the effect of long-range interactions. Here we explore experimentally and numerically a minimal model for a ciliated surface: hydrodynamically coupled oscillators rotating above a no-slip plane. Increasing their distance from the wall profoundly affects the global dynamics, due to variations in hydrodynamic interaction range. The array undergoes a transition from a traveling wave to either a steady chevron pattern or one punctuated by periodic phase defects. Within the transition between these regimes the system displays behavior reminiscent of chimera states.
Collapse
Affiliation(s)
- Douglas R. Brumley
- Ralph M. Parsons Laboratory, Department of Civil and Environmental
Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139,
USA
- Department of Civil, Environmental and Geomatic Engineering, ETH
Zürich, 8093 Zürich, Switzerland
| | - Nicolas Bruot
- Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba,
Meguro-ku, Tokyo 153-8505, Japan
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE,
United Kingdom
| | - Jurij Kotar
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE,
United Kingdom
| | - Raymond E. Goldstein
- Department of Applied Mathematics and Theoretical Physics,
University of Cambridge, Centre for Mathematical Sciences, Wilberforce Road,
Cambridge CB3 0WA, United Kingdom
| | - Pietro Cicuta
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE,
United Kingdom
| | - Marco Polin
- Physics Department, University of Warwick, Gibbet Hill Road,
Coventry CV4 7AL, United Kingdom
| |
Collapse
|