1
|
Flores-López A, Guevara-Cruz M, Avila-Nava A, González-Garay AG, González-Salazar LE, Reyes-Ramírez AL, Pedraza-Chaverri J, Medina-Campos ON, Medina-Vera I, Reyes-García JG, Tovar AR, Serralde-Zúñiga AE. n-3 Polyunsaturated Fatty Acid Supplementation Affects Oxidative Stress Marker Levels in Patients with Type II Intestinal Failure: A Randomized Double Blind Trial. Antioxidants (Basel) 2023; 12:1493. [PMID: 37627489 PMCID: PMC10451159 DOI: 10.3390/antiox12081493] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Type II intestinal failure (IF-II) is a condition in which the gastrointestinal tract is compromised. Liver complications may occur because of the pathology and/or prolonged use of parenteral nutrition (PN); oxidative stress has been implicated as one of the causes. Lipid emulsions containing n-3 polyunsaturated fatty acids (PUFAs) have been proposed for the treatment. We aimed to evaluate the effect of 7-day n-3 PUFA supplementation on oxidative stress in IF-II patients receiving PN. This was a randomized, controlled, double-blinded, pilot trial of adult patients with IF-II, receiving either conventional PN (control) or PN enriched with n-3 PUFAs (intervention). Twenty patients were included (14 men, 49 ± 16.9 years), with the ANCOVA analysis the glucose (p = 0.003), and direct bilirubin (p = 0.001) levels reduced; whereas the high-density lipoprotein cholesterol (HDL-C) increased (p = 0.017). In the random-effect linear regression analysis, a reduction (p < 0.0001) in the malondialdehyde (MDA) level was found in the intervention group when the covariables age, HDL-C level, and alanine aminotransferase activity were considered. After 1 week of PN supplementation with n-3 PUFAs, the marker levels of some oxidative stress, blood lipids, and hepatic biomarkers improved in patients with IF-II.
Collapse
Affiliation(s)
- Adriana Flores-López
- Servicio Nutriología Clínica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Martha Guevara-Cruz
- Departamento Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Azalia Avila-Nava
- Unidad de Investigación, Hospital Regional de Alta Especialidad de la Península de Yucatán, Mérida 97130, Mexico
| | | | - Luis E. González-Salazar
- Servicio Nutriología Clínica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Ana L. Reyes-Ramírez
- Servicio Nutriología Clínica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Omar N. Medina-Campos
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Isabel Medina-Vera
- Departamento de Metodología de la Investigación, Instituto Nacional de Pediatría, Mexico City 04530, Mexico
| | - Juan G. Reyes-García
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Armando R. Tovar
- Departamento Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Aurora E. Serralde-Zúñiga
- Servicio Nutriología Clínica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| |
Collapse
|
2
|
Wang GS, Chen HY, Feng GX, Yuan Y, Wan ZL, Guo J, Wang JM, Yang XQ. Polyphenol-Enriched Protein Oleogels as Potential Delivery Systems of Omega-3 Fatty Acids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:749-759. [PMID: 36534616 DOI: 10.1021/acs.jafc.2c06348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Omega-3 polyunsaturated fatty acids (n-3 FAs) are essential nutrients and are considered effective in improving human health. Recent studies highlight the importance of the combination of n-3 FAs and polyphenols for limiting the oxidation of n-3 FAs and exhibiting synergistic beneficial effects. Herein, we developed a novel formulation technology to prepare oleogels that could be used for the codelivery of n-3 FAs and polyphenols with high loading efficacy and oxidative stability. These oleogels are made from algal oil with polyphenol-enriched whey protein microgel (WPM) particles as gelling agents via simple and scalable ball milling technology. The oxidative status, fatty acid composition, and volatiles of protein oleogels during accelerated storage were systematically assessed by stoichiometry and gas chromatography-mass spectrometry. These results showed that protein oleogels could overcome several challenges associated with the formulation of n-3 oils, including long-term oxidative stability and improved sensory and textural properties. The protein oleogel system could provide an excellent convenience for formulating multiple nutrients and nutraceuticals with integrating health effects, which are expected to be used in the care of highly vulnerable populations, including children, the elderly, and patients.
Collapse
Affiliation(s)
- Gao-Shang Wang
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, PR China
| | - Hong-Yu Chen
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, PR China
| | - Guang-Xin Feng
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, PR China
| | - Yang Yuan
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Zhi-Li Wan
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, PR China
| | - Jian Guo
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, PR China
| | - Jin-Mei Wang
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, PR China
| | - Xiao-Quan Yang
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, PR China
| |
Collapse
|
3
|
Matos J, Afonso C, Cardoso C, Serralheiro ML, Bandarra NM. Yogurt Enriched with Isochrysis galbana: An Innovative Functional Food. Foods 2021; 10:1458. [PMID: 34202539 PMCID: PMC8306745 DOI: 10.3390/foods10071458] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/09/2021] [Accepted: 06/21/2021] [Indexed: 01/19/2023] Open
Abstract
Microalgae are a valuable and innovative emerging source of natural nutrients and bioactive compounds that can be used as functional ingredients in order to increase the nutritional value of foods to improve human health and to prevent disease. The marine microalga Isochrysis galbana has great potential for the food industry as a functional ingredient, given its richness in ω3 long chain-polyunsaturated fatty acids (LC-PUFAs), with high contents of oleic, linoleic, alpha-linolenic acid (ALA), stearidonic, and docosahexaenoic (DHA) acids. This study focuses on the formulation of a functional food by the incorporation of 2% (w/w) of I. galbana freeze-dried biomass and 2% (w/w) of I. galbana ethyl acetate lipidic extract in solid natural yogurts preparation. In the functional yogurt enriched with microalgal biomass, the ω3 LC-PUFA's content increased (to 60 mg/100 g w/w), specifically the DHA content (9.6 mg/100 g ww), and the ω3/ω6 ratio (augmented to 0.8). The in vitro digestion study showed a poor bioaccessibility of essential ω3 LC-PUFAs, wherein linoleic acid (18:2 ω6) presented a bioaccessibility inferior to 10% and no DHA or eicosapentaenoic acid (EPA) was detected in the bioaccessible fraction of the functional yogurts, thus indicating a low accessibility of lipids during digestion. Notwithstanding, when compared to the original yogurt, an added value novel functional yogurt with DHA and a higher ω3 LC-PUFAs content was obtained. The functional yogurt enriched with I. galbana can be considered important from a nutritional point of view and a suitable source of essential FAs in the human diet. However, this needs further confirmation, entailing additional investigation into bioavailability through in vivo assays.
Collapse
Affiliation(s)
- Joana Matos
- Division of Aquaculture, Upgrading and Bioprospection (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Avenida Alfredo Magalhães Ramalho, 6, 1495-165 Algés, Portugal; (C.A.); (C.C.); (N.M.B.)
- Faculty of Sciences, BioISI—Biosystems & Integrative Sciences Institute, University of Lisboa, Campo Grande 016, 1749-016 Lisboa, Portugal;
| | - Cláudia Afonso
- Division of Aquaculture, Upgrading and Bioprospection (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Avenida Alfredo Magalhães Ramalho, 6, 1495-165 Algés, Portugal; (C.A.); (C.C.); (N.M.B.)
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal
| | - Carlos Cardoso
- Division of Aquaculture, Upgrading and Bioprospection (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Avenida Alfredo Magalhães Ramalho, 6, 1495-165 Algés, Portugal; (C.A.); (C.C.); (N.M.B.)
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal
| | - Maria L. Serralheiro
- Faculty of Sciences, BioISI—Biosystems & Integrative Sciences Institute, University of Lisboa, Campo Grande 016, 1749-016 Lisboa, Portugal;
| | - Narcisa M. Bandarra
- Division of Aquaculture, Upgrading and Bioprospection (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Avenida Alfredo Magalhães Ramalho, 6, 1495-165 Algés, Portugal; (C.A.); (C.C.); (N.M.B.)
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal
| |
Collapse
|
4
|
Ahmed Nasef N, Zhu P, Golding M, Dave A, Ali A, Singh H, Garg M. Salmon food matrix influences digestion and bioavailability of long-chain omega-3 polyunsaturated fatty acids. Food Funct 2021; 12:6588-6602. [PMID: 34100498 DOI: 10.1039/d1fo00475a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The natural structure of whole food plays an important role in the physiological impact of bioactive compounds present within the food, also known as the "matrix effect". Long-chain omega-3 polyunsaturated fatty acids (LCn-3PUFAs) are one example of a food-derived nutrient, mostly found in fish, that is believed to be influenced by the food matrix. However, most previous studies have compared only the long-term bioavailability of fish versus fish oil and have used commercial sources of fish oil. The present study aimed to investigate whether fish (salmon) matrix influences the transit of LCn-3PUFAs during in vitro digestion and affects bioavailability in healthy females. Meals containing intact salmon (intact structure), minced salmon (some structure) and defatted salmon + oil (no structure) with identical macronutrient compositions were developed. Healthy female participants (n = 13) consumed the meals in a postprandial crossover study and blood was collected at regular time points for 6 h post meal consumption. In parallel, in vitro digestion of the meals was performed using a human gastric simulator (HGS) and digesta samples were collected at regular time points for 6 h. Results: showed that plasma concentration of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) were significantly higher after participants consumed intact salmon compared to the other meals (covariate analysis p < 0.001). The in vitro digestion results showed defatted salmon + oil meal had a faster decrease in pH and faster fat emptying from the HGS than the other two meals. The defatted salmon + oil meal more closely followed fat emptying of a homogeneous unstructured meal, whereas the other meals exhibited phase separation with a delay in fat emptying. Conclusion: The fish matrix (salmon) plays an important role in the bioaccessibility and bioavailability of EPA and DHA. The differences are partly explained by fat digestion and emptying from the stomach. This study suggests that the natural structure of fish has a functional effect on the absorption and bioavailability of fish oil.
Collapse
Affiliation(s)
- Noha Ahmed Nasef
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| | | | | | | | | | | | | |
Collapse
|
5
|
Paulo MC, Marques J, Cardoso C, Coutinho J, Gomes R, Gomes-Bispo A, Afonso C, Bandarra NM. The development of a novel functional food: bioactive lipids in yogurts enriched with Aurantiochytrium sp. biomass. Food Funct 2021; 11:9721-9728. [PMID: 33063067 DOI: 10.1039/d0fo01884h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Western diets are poor in healthy n3 polyunsaturated fatty acids, such as docosahexaenoic acid. Since microalga Aurantiochytrium sp. is rich in docosahexaenoic acid, a functional food based on lean yogurt and this microalga was tested. This study entailed characterizing the lipid fraction and determining the fatty acid bioaccessibility. The tested yogurts (control and 2% w/w, Aurantiochytrium sp.) had differences. Docosahexaenoic acid was not detected in the control product, but it was the second most important fatty acid in Aurantiochytrium sp. and Aurantiochytrium yogurt, 29.7 ± 0.4% and 18.7 ± 2.0%, respectively. Based on the fatty acid profile only, an amount of 158.7 g of Aurantiochytrium yogurt in wet weight terms would be required to ensure an appropriate intake of healthy fatty acids. Generally, the fatty acid bioaccessibility was not high, remaining below 60-70% in almost all cases. Considering the docosahexaenoic acid bioaccessibility (44 ± 3%), an amount of 360.7 g of Aurantiochytrium yogurt would be advisable. A reasonable dietary prescription would be a daily consumption of 125 ml of Aurantiochytrium yogurt.
Collapse
Affiliation(s)
- M C Paulo
- Depsiextracta Tecnologias Biológicas Lda, Zona Industrial do Monte da Barca, lote 62, rua H, Coruche, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Granato D, Barba FJ, Bursać Kovačević D, Lorenzo JM, Cruz AG, Putnik P. Functional Foods: Product Development, Technological Trends, Efficacy Testing, and Safety. Annu Rev Food Sci Technol 2020; 11:93-118. [PMID: 31905019 DOI: 10.1146/annurev-food-032519-051708] [Citation(s) in RCA: 232] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Functional foods is a very popular term in the social and scientific media; consequently, food producers have invested resources in the development of processed foods that may provide added functional benefits to consumers' well-being. Because of intrinsic regulation and end-of-use purposes in different countries, worldwide meanings and definitions of this term are still unclear. Hence, here we standardize this definition and propose a guideline to attest that some ingredients or foods truly deserve this special designation. Furthermore, focus is directed at the most recent studies and practical guidelines that can be used to develop and test the efficacy of potentially functional foods and ingredients. The most widespread functional ingredients, such as polyunsaturated fatty acids (PUFAs), probiotics/prebiotics/synbiotics, and antioxidants, and their technological means of delivery in food products are described. The review discusses the steps that food companies should take to ensure that their developed food product is truly functional.
Collapse
Affiliation(s)
- Daniel Granato
- Innovative Food System, Production Systems Unit, Natural Resources Institute Finland (Luke), FI-0250 Espoo, Finland;
| | - Francisco J Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, 46100 Burjassot, València, Spain
| | | | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, San Cibrao das Vinas, 32900 Ourense, Spain
| | - Adriano G Cruz
- Department of Food, Federal Institute of Science, Education and Technology of Rio de Janeiro (IFRJ), 20260-100 Rio de Janeiro, Brazil
| | - Predrag Putnik
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
7
|
Sehl A, Couëdelo L, Vaysse C, Cansell M. Intestinal bioavailability of n-3 long-chain polyunsaturated fatty acids influenced by the supramolecular form of phospholipids. Food Funct 2020; 11:1721-1728. [DOI: 10.1039/c9fo02953b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work aims at studying the bioavailability of n-3 long-chain polyunsaturated fatty acids carried by marine phospholipids, formulated in different supramolecular forms,i.e.oil-in-water emulsion and liposomes.
Collapse
Affiliation(s)
- Anthony Sehl
- ITERG
- Nutrition Health and Lipid Biochemistry Department
- 33610 Canéjan
- France
- Univ. Bordeaux
| | - Leslie Couëdelo
- ITERG
- Nutrition Health and Lipid Biochemistry Department
- 33610 Canéjan
- France
| | - Carole Vaysse
- ITERG
- Nutrition Health and Lipid Biochemistry Department
- 33610 Canéjan
- France
| | | |
Collapse
|
8
|
Heller M, Gemming L, Tung C, Grant R. Oxidation of fish oil supplements in Australia. Int J Food Sci Nutr 2019; 70:540-550. [DOI: 10.1080/09637486.2018.1542666] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Monique Heller
- Australasian Research Institute, Sydney Adventist Hospital, Wahroonga, Australia
- University of Sydney, Nutrition and Dietetics Group, Charles Perkins Centre, School of Life and Environmental Sciences, Sydney, Australia
| | - Luke Gemming
- University of Sydney, Nutrition and Dietetics Group, Charles Perkins Centre, School of Life and Environmental Sciences, Sydney, Australia
| | - Chin Tung
- Australasian Research Institute, Sydney Adventist Hospital, Wahroonga, Australia
| | - Ross Grant
- Australasian Research Institute, Sydney Adventist Hospital, Wahroonga, Australia
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, Australia
- Sydney Adventist Hospital Clinical School, University of Sydney, Sydney, Australia
| |
Collapse
|
9
|
Chitre NM, Moniri NH, Murnane KS. Omega-3 Fatty Acids as Druggable Therapeutics for Neurodegenerative Disorders. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2019; 18:735-749. [PMID: 31724519 PMCID: PMC7204890 DOI: 10.2174/1871527318666191114093749] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/07/2019] [Accepted: 10/22/2019] [Indexed: 12/19/2022]
Abstract
Neurodegenerative disorders are commonly associated with a complex pattern of pathophysiological hallmarks, including increased oxidative stress and neuroinflammation, which makes their treatment challenging. Omega-3 Fatty Acids (O3FA) are natural products with reported neuroprotective, anti-inflammatory, and antioxidant effects. These effects have been attributed to their incorporation into neuronal membranes or through the activation of intracellular or recently discovered cell-surface receptors (i.e., Free-Fatty Acid Receptors; FFAR). Molecular docking studies have investigated the roles of O3FA as agonists of FFAR and have led to the development of receptor-specific targeted agonists for therapeutic purposes. Moreover, novel formulation strategies for targeted delivery of O3FA to the brain have supported their development as therapeutics for neurodegenerative disorders. Despite the compelling evidence of the beneficial effects of O3FA for several neuroprotective functions, they are currently only available as unregulated dietary supplements, with only a single FDA-approved prescription product, indicated for triglyceride reduction. This review highlights the relative safety and efficacy of O3FA, their drug-like properties, and their capacity to be formulated in clinically viable drug delivery systems. Interestingly, the presence of cardiac conditions such as hypertriglyceridemia is associated with brain pathophysiological hallmarks of neurodegeneration, such as neuroinflammation, thereby further suggesting potential therapeutic roles of O3FA for neurodegenerative disorders. Taken together, this review article summarizes and integrates the compelling evidence regarding the feasibility of developing O3FA and their synthetic derivatives as potential drugs for neurodegenerative disorders.
Collapse
Affiliation(s)
- Neha M. Chitre
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University Health Sciences Center, Mercer University, Atlanta, GA USA
| | - Nader H. Moniri
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University Health Sciences Center, Mercer University, Atlanta, GA USA
| | - Kevin S. Murnane
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University Health Sciences Center, Mercer University, Atlanta, GA USA
| |
Collapse
|
10
|
Cholewski M, Tomczykowa M, Tomczyk M. A Comprehensive Review of Chemistry, Sources and Bioavailability of Omega-3 Fatty Acids. Nutrients 2018; 10:E1662. [PMID: 30400360 PMCID: PMC6267444 DOI: 10.3390/nu10111662] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 10/28/2018] [Accepted: 10/29/2018] [Indexed: 12/20/2022] Open
Abstract
Omega-3 fatty acids, one of the key building blocks of cell membranes, have been of particular interest to scientists for many years. However, only a small group of the most important omega-3 polyunsaturated fatty acids are considered. This full-length review presents a broad and relatively complete cross-section of knowledge about omega-3 monounsaturated fatty acids, polyunsaturates, and an outline of their modifications. This is important because all these subgroups undoubtedly play an important role in the function of organisms. Some monounsaturated omega-3s are pheromone precursors in insects. Polyunsaturates with a very long chain are commonly found in the central nervous system and mammalian testes, in sponge organisms, and are also immunomodulating agents. Numerous modifications of omega-3 acids are plant hormones. Their chemical structure, chemical binding (in triacylglycerols, phospholipids, and ethyl esters) and bioavailability have been widely discussed indicating a correlation between the last two. Particular attention is paid to the effective methods of supplementation, and a detailed list of sources of omega-3 acids is presented, with meticulous reference to the generally available food. Both the oral and parenteral routes of administration are taken into account, and the omega-3 transport through the blood-brain barrier is mentioned. Having different eating habits in mind, the interactions between food fatty acids intake are discussed. Omega-3 acids are very susceptible to oxidation, and storage conditions often lead to a dramatic increase in this exposure. Therefore, the effect of oxidation on their bioavailability is briefly outlined.
Collapse
Affiliation(s)
- Mateusz Cholewski
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Białystok, ul. Mickiewicza 2a, 15-230 Białystok, Poland.
| | - Monika Tomczykowa
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Białystok, ul. Mickiewicza 2a, 15-230 Białystok, Poland.
| | - Michał Tomczyk
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Białystok, ul. Mickiewicza 2a, 15-230 Białystok, Poland.
| |
Collapse
|
11
|
Utami FA, Lee HC, Su CT, Guo YR, Tung YT, Huang SY. Effects of calorie restriction plus fish oil supplementation on abnormal metabolic characteristics and the iron status of middle-aged obese women. Food Funct 2018; 9:1152-1162. [PMID: 29362766 DOI: 10.1039/c7fo01787a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The increasing prevalence of obesity and sedentary lifestyles has led to a higher incidence of metabolic syndrome (MetS) worldwide as well as in Taiwan. Middle-aged women are at a greater risk of MetS, type 2 diabetes, and cardiovascular disease than men because they have more subcutaneous fat and larger waist circumferences compared with men with equal visceral fat levels. In this study, we investigated the effects of calorie restriction (CR) and fish oil supplementation (CRF) on middle-aged Taiwanese women with MetS. An open-label, parallel-arm, controlled trial was conducted for 12 weeks. A total of 75 eligible participants were randomly assigned to the CR or CRF group. Both the dietary intervention groups were further divided into two age groups: ≤45 and >45 years. Changes in MetS severity, inflammatory status, iron status, and red blood cell fatty acid profile were evaluated. A total of 71 participants completed the trial. Both dietary interventions significantly ameliorated MetS and improved the participants' inflammatory status. CR significantly increased the total iron-binding capacity (TIBC) whereas CRF increased hepcidin levels in women aged >45 years. Furthermore, CRF significantly increased the n-6/n-3 and arachidonic acid/docosahexaenoic acid ratios. Both interventions improved the anthropometric and MetS characteristics, including body weight, blood glucose and triglyceride levels, and the score of the homeostasis model assessment of insulin resistance and quantitative insulin sensitivity check index. In conclusion, the 12-week dietary interventions improved the abnormal metabolic status of middle-aged obese women. CRF was demonstrated to be more effective in ameliorating postprandial glucose level and TIBC in women aged >45 years than in those aged ≤45 years.
Collapse
Affiliation(s)
- Fasty Arum Utami
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan.
| | | | | | | | | | | |
Collapse
|
12
|
Effects of krill oil and lean and fatty fish on cardiovascular risk markers: a randomised controlled trial. J Nutr Sci 2018; 7:e3. [PMID: 29372051 PMCID: PMC5773922 DOI: 10.1017/jns.2017.64] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/13/2017] [Accepted: 10/16/2017] [Indexed: 01/10/2023] Open
Abstract
Fish consumption and supplementation with n-3 fatty acids reduce CVD risk. Krill oil is an alternative source of marine n-3 fatty acids and few studies have investigated its health effects. Thus, we compared krill oil supplementation with the intake of fish with similar amounts of n-3 fatty acids on different cardiovascular risk markers. In an 8-week randomised parallel study, thirty-six healthy subjects aged 18–70 years with fasting serum TAG between 1·3 and 4·0 mmol/l were randomised to receive either fish, krill oil or control oil. In the fish group, subjects consumed lean and fatty fish, according to dietary guidelines. The krill and control group received eight capsules per d containing 4 g oil per d. The weekly intake of marine n-3 fatty acids from fish given in the fish group and from krill oil in the krill group were 4103 and 4654 mg, respectively. Fasting serum TAG did not change between the groups. The level of total lipids (P = 0·007), phospholipids (P = 0·015), cholesterol (P = 0·009), cholesteryl esters (P = 0·022) and non-esterified cholesterol (P = 0·002) in the smallest VLDL subclass increased significantly in response to krill oil supplementation. Blood glucose decreased significantly (P = 0·024) in the krill group and vitamin D increased significantly in the fish group (P = 0·024). Furthermore, plasma levels of marine n-3 fatty acids increased significantly in the fish and krill groups compared with the control (all P ≤ 0·0003). In conclusion, supplementation with krill oil and intake of fish result in health-beneficial effects. Although only krill oil reduced fasting glucose, fish provide health-beneficial nutrients, including vitamin D.
Collapse
|