1
|
Aldrich L, Ispoglou T, Prokopidis K, Alqallaf J, Wilson O, Stavropoulos-Kalinoglou A. Acute Sarcopenia: Systematic Review and Meta-Analysis on Its Incidence and Muscle Parameter Shifts During Hospitalisation. J Cachexia Sarcopenia Muscle 2025; 16:e13662. [PMID: 39690131 DOI: 10.1002/jcsm.13662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 10/22/2024] [Accepted: 10/31/2024] [Indexed: 12/19/2024] Open
Abstract
BACKGROUND Acute sarcopenia is sarcopenia lasting less than 6 months, typically following acute illness or injury. It may impact patient recovery and quality of life, advancing to chronic sarcopenia. However, its development and assessment remain poorly understood, particularly during hospitalisation. This systematic review aimed to elucidate the incidence of acute sarcopenia and examine changes in muscle parameters during hospitalisation. METHODS Eighty-eight papers were included in the narrative synthesis; 33 provided data for meta-analyses on the effects of hospitalisation on handgrip strength (HGS), rectus femoris cross-sectional area (RFCSA) and various muscle function tests. Meta-regressions were performed for length of hospital stay (LoS) and age for all meta-analyses; sex was also considered for HGS. RESULTS Acute sarcopenia development was assessed in four studies with a pooled incidence of 18% during hospitalisation. Incidence was highest among trauma patients in intensive care (59%), whereas it was lower among medical and surgical patients (15%-20%). Time of development ranged from 4 to 44 days. HGS remained stable during hospitalisation (SMD = 0.05, 95% CI = -0.18:0.28, p = 0.67) as did knee extensor strength. LoS affected HGS performance (θ = 0.04, 95% CI = 0.001:0.09, p = 0.045) but age (p = 0.903) and sex (p = 0.434) did not. RFCSA, reduced by 16.5% over 3-21 days (SMD = -0.67, 95% CI = -0.92:-0.43, p < 0.001); LoS or time between scans did significantly predict the reduction (θ = -0.04, 95% CI = -0.077:-0.011, p = 0.012). Indices of muscle quality also reduced. Muscle function improved when assessed by the short physical performance battery (SMD = 0.86, 95% CI = 0.03:1.69, p = 0.046); there was no change in 6-min walk (p = 0.22), timed up-and-go (p = 0.46) or gait speed tests (p = 0.98). The only significant predictor of timed up-and-go performance was age (θ = -0.11, 95% CI = -0.018:-0.005, p = 0.009). CONCLUSIONS Assessment and understanding of acute sarcopenia in clinical settings are limited. Incidence varies between clinical conditions, and muscle parameters are affected differently. HGS and muscle function tests may not be sensitive enough to identify acute changes during hospitalisation. Currently, muscle health deterioration may be underdiagnosed impacting recovery, quality of life and overall health following hospitalisation. Further evaluation is necessary to determine the suitability of existing diagnostic criteria of acute sarcopenia. Muscle mass and quality indices might need to become the primary determinants for muscle health assessment in hospitalised populations.
Collapse
Affiliation(s)
- Luke Aldrich
- Carnegie School of Sport, Leeds Beckett University, Headingley Campus, Leeds, UK
| | - Theocharis Ispoglou
- Carnegie School of Sport, Leeds Beckett University, Headingley Campus, Leeds, UK
| | | | - Jasem Alqallaf
- Carnegie School of Sport, Leeds Beckett University, Headingley Campus, Leeds, UK
| | - Oliver Wilson
- Carnegie School of Sport, Leeds Beckett University, Headingley Campus, Leeds, UK
| | | |
Collapse
|
2
|
Jin S, Kang PM. A Systematic Review on Advances in Management of Oxidative Stress-Associated Cardiovascular Diseases. Antioxidants (Basel) 2024; 13:923. [PMID: 39199169 PMCID: PMC11351257 DOI: 10.3390/antiox13080923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/10/2024] [Accepted: 07/19/2024] [Indexed: 09/01/2024] Open
Abstract
Oxidative stress plays a significant role in the pathogenesis of cardiovascular diseases, such as myocardial ischemia/reperfusion injury, atherosclerosis, heart failure, and hypertension. This systematic review aims to integrate most relevant studies on oxidative stress management in cardiovascular diseases. We searched relevant literatures in the PubMed database using specific keywords. We put emphasis on those manuscripts that were published more recently and in higher impact journals. We reviewed a total of 200 articles. We examined current oxidative stress managements in cardiovascular diseases, including supplements like resveratrol, vitamins C and E, omega-3 fatty acids, flavonoids, and coenzyme-10, which have shown antioxidative properties and potential cardiovascular benefits. In addition, we reviewed the pharmacological treatments including newly discovered antioxidants and nanoparticles that show potential effects in targeting the specific oxidative stress pathways. Lastly, we examined biomarkers, such as soluble transferrin receptor, transthyretin, and cystatin C in evaluating antioxidant status and identifying cardiovascular risk. By addressing oxidative stress management and mechanisms, this paper emphasizes the importance of maintaining the balance between oxidants and antioxidants in the progression of cardiovascular diseases. This review paper is registered with the International Platform of Registered Systematic Review and Meta-analysis Protocols (INPLASY), registration # INPLASY202470064.
Collapse
Affiliation(s)
- Soyeon Jin
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, CLS 910, Boston, MA 02215, USA
- School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences, Boston, MA 02115, USA
| | - Peter M. Kang
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, CLS 910, Boston, MA 02215, USA
| |
Collapse
|
3
|
Antar SA, Abdo W, Helal AI, Abduh MS, Hakami ZH, Germoush MO, Alsulimani A, Al-Noshokaty TM, El-Dessouki AM, ElMahdy MK, Elgebaly HA, Al-Karmalawy AA, Mahmoud AM. Coenzyme Q10 mitigates cadmium cardiotoxicity by downregulating NF-κB/NLRP3 inflammasome axis and attenuating oxidative stress in mice. Life Sci 2024; 348:122688. [PMID: 38710284 DOI: 10.1016/j.lfs.2024.122688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/12/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
Coenzyme Q10 (CoQ10) occurs naturally in the body and possesses antioxidant and cardioprotective effects. Cardiotoxicity has emerged as a serious effect of the exposure to cadmium (Cd). This study investigated the curative potential of CoQ10 on Cd cardiotoxicity in mice, emphasizing the involvement of oxidative stress (OS) and NF-κB/NLRP3 inflammasome axis. Mice received a single intraperitoneal dose of CdCl2 (6.5 mg/kg) and a week after, CoQ10 (100 mg/kg) was supplemented daily for 14 days. Mice that received Cd exhibited cardiac injury manifested by the elevated circulating cardiac troponin T (cTnT), CK-MB, LDH and AST. The histopathological and ultrastructural investigations supported the biochemical findings of cardiotoxicity in Cd-exposed mice. Cd administration increased cardiac MDA, NO and 8-oxodG while suppressed GSH and antioxidant enzymes. CoQ10 decreased serum CK-MB, LDH, AST and cTnT, ameliorated histopathological and ultrastructural changes in the heart of mice, decreased cardiac MDA, NO, and 8-OHdG and improved antioxidants. CoQ10 downregulated NF-κB p65, NLRP3 inflammasome, IL-1β, MCP-1, JNK1, and TGF-β in the heart of Cd-administered mice. Moreover, in silico molecular docking revealed the binding potential between CoQ10 and NF-κB, ASC1 PYD domain, NLRP3 PYD domain, MCP-1, and JNK. In conclusion, CoQ10 ameliorated Cd cardiotoxicity by preventing OS and inflammation and modulating NF-κB/NLRP3 inflammasome axis in mice. Therefore, CoQ10 exhibits potent therapeutic benefits in safeguarding cardiac tissue from the harmful consequences of exposure to Cd.
Collapse
Affiliation(s)
- Samar A Antar
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA 24016, USA; Department of Pharmacology, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt
| | - Walied Abdo
- Department of Pathology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33511, Egypt
| | - Azza I Helal
- Department of Histology and Cell Biology, Faculty of Medicine, Kafrelsheikh University, Kafrelsheikh 33511, Egypt
| | - Maisa Siddiq Abduh
- Immune Responses in Different Diseases Research Group, Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Zaki H Hakami
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Jazan University, Jazan 82817, Saudi Arabia
| | - Mousa O Germoush
- Biology Department, College of Science, Jouf University, Sakakah 72388, Saudi Arabia
| | - Ahmad Alsulimani
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Jazan University, Jazan 82817, Saudi Arabia
| | - Tohada M Al-Noshokaty
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Ahmed M El-Dessouki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ahram Canadian University, 6th of October, Giza 12566, Egypt
| | - Mohamed Kh ElMahdy
- Department of Pharmacology, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt
| | - Hassan A Elgebaly
- Biology Department, College of Science, Jouf University, Sakakah 72388, Saudi Arabia
| | - Ahmed A Al-Karmalawy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6(th) of October, Giza 12566, Egypt
| | - Ayman M Mahmoud
- Department of Life Sciences, Faculty of Science & Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK; Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt.
| |
Collapse
|
4
|
Kiani Z, Khorsand N, Beigi F, Askari G, Sharma M, Bagherniya M. Coenzyme Q10 supplementation in burn patients: a double-blind placebo-controlled randomized clinical trial. Trials 2024; 25:160. [PMID: 38431600 PMCID: PMC10908042 DOI: 10.1186/s13063-024-08006-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 02/22/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Burn injuries are important medical problems that, aside from skin damage, cause a systemic response including inflammation, oxidative stress, endocrine disorders, immune response, and hypermetabolic and catabolic responses which affect all the organs in the body. The aim of this study was to determine the effect of coenzyme Q10 (CoQ10) supplementation on inflammation, oxidative stress, and clinical outcomes in burn patients. METHODS In a double-blind placebo-controlled randomized clinical trial, 60 burn patients were randomly assigned to receive 100 mg CoQ10 three times a day (total 300 mg/day) or a placebo for 10 days. Inflammatory markers including erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), oxidative stress markers including total antioxidant capacity (TAC), malondialdehyde (MDA) and superoxide dismutase (SOD) activity, fasting blood glucose (FBG), blood urea nitrogen (BUN), creatinine, white blood cells (WBC), and body temperature were assessed as primary outcomes and albumin, prothrombin time (PT), partial thromboplastin time (PTT), international normalized ratio (INR), other hematological parameters, blood pressure, O2 saturation, ICU duration, and 28-mortality rate were assessed as secondary outcomes. RESULTS Fifty-two participants completed the trial. CRP and ESR levels were not significantly different between CoQ10 and placebo groups at the end of the study (P = 0.550 and P = 0.306, respectively). No significant differences between groups were observed for TAC (P = 0.865), MDA (P = 0.692), and SOD activity (P = 0.633) as well. Administration of CoQ10 resulted in a significant increase in albumin levels compared to placebo (P = 0.031). There was no statistically significant difference between the two groups in other measured outcomes (P > 0.05). CONCLUSION Results showed that in patients with burn injury, CoQ10 administration had no effect on inflammatory markers and oxidative stress, although serum albumin levels were improved after supplementation. Further studies with albumin as the primary outcome are needed to confirm this finding.
Collapse
Affiliation(s)
- Zahra Kiani
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nadereh Khorsand
- Department of Internal Medicine, Imam Musa Kazem Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fahimeh Beigi
- Pharmaceutical Biotechnology Department, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Science, Isfahan, Iran
- Research and Development Unit, Imam Muss Kazim Hospital, Isfahan University of Medical Science, Isfahan, Iran
| | - Gholamreza Askari
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Manoj Sharma
- Department of Social and Behavioral Health, School of Public Health, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Mohammad Bagherniya
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
5
|
Coenzyme Q10 Supplementation and Oxidative Stress Parameters: An Updated Systematic Review and Meta-analysis of Randomized Controlled Clinical Trials. Asian J Sports Med 2022. [DOI: 10.5812/asjsm-131308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Oxidative stress (OS) contributes to the development of some disorders, including malignancies, metabolic diseases, Alzheimer's disease, and Parkinson's disease. Objectives: The effects of coenzyme Q10 (CoQ10) supplementation on OS parameters have been assessed through an updated systematic review and meta-analysis. Methods: SCOPUS, PubMed, Cochrane Library, EMBASE, and Web of Sciences were used for article searching. Standardized mean difference (SMD) and its standard error were calculated using a random-effects DerSimonian and Laird model. All analyses were done using the STATA software version 16.0 (StataCorp, College Station, TX). Results: Based on twenty-five studies which remained to be incorporated in the meta-analysis, a statistically significant decrease in malondialdehyde (MDA) (SMD -2.74; 95% CI -3.89, -1.58; I2 = 96.9%) as well as nitric oxide (NO) (SMD -5.16; 95% CI -7.98, 2.34; I2 = 92.5%) was associated with CoQ10 supplementation, and a significant increase in total antioxidant capacity (TAC) (SMD 3.40; 95% CI 1.98, 4.83; I2 = 97.4%) and superoxide dismutase (SOD) activity (SMD 1.22; 95% CI 0.32, 2.12; I2 = 94.32%). Conclusions: The results showed no significant effect of CoQ10 supplementation on glutathione peroxidase (GPx), catalase (CAT) activities, and glutathione (GSH) levels. CoQ10 supplementation significantly reduced MDA and NO concentrations and increased TAC and SOD activity.
Collapse
|
6
|
Zhang Y, Huang X, Liu N, Liu M, Sun C, Qi B, Sun K, Wei X, Ma Y, Zhu L. Discovering the Potential Value of Coenzyme Q10 in Oxidative Stress: Enlightenment From a Synthesis of Clinical Evidence Based on Various Population. Front Pharmacol 2022; 13:936233. [PMID: 35910386 PMCID: PMC9330130 DOI: 10.3389/fphar.2022.936233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/09/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Oxidative stress (OS) is associated with ferroptosis. Coenzyme Q10 (CoQ10), as an adjuvant treatment, has shown to be beneficial against OS. However, the efficacy of CoQ10 as a therapeutic agent against OS has not been promptly updated and systematically investigated. Methods: A systematic literature search was performed using the Medline, EMBASE, Web of science, Cochrane Central Register of Controlled Trials, CNKI, CBM, Science direct and clinical trial. gov to identify randomized clinical trials evaluating the efficacy of CoQ10 supplementation on OS parameters. Standard mean differences and 95% confidence intervals were calculated for net changes in OS parameters using a random-effects model. Results: Twenty-one randomized clinical studies met the eligibility criteria to be included in the meta-analysis. Overall, CoQ10 supplementation increased the levels of antioxidant enzymes [including superoxide dismutase (SOD) (SMD = 0.63; 95% CI: 0.38 to 0.88; p < 0.001), catalase (CAT) (SMD = 0.44; 95% CI:0.16 to 0.72; p = 0.002)] significantly and the levels of malondialdehyde (MDA) (SMD = -0.68; 95% CI: 0.93 to -0.43; p < 0.001) was decreased considerably. However, significant associations were not observed between this supplement and total antioxidant capacity (TAC), glutathione peroxidase (GPx) activity. Conclusion: CoQ10 can improve OS as indicated by statistical significance in CAT and MDA concentrations, as well as SOD activity. Future studies focusing on long-term results and specific valuation of OS parameters are required to confirm the efficacy of CoQ10 on OS. We also believe that with the further research on ferroptosis, CoQ10 will gain more attention. Systematic Review Registration: [https://inplasy.com/], identifier [INPLASY2021120123].
Collapse
Affiliation(s)
- Yili Zhang
- School of Traditional Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinyi Huang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ning Liu
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mengmin Liu
- School of Traditional Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chuanrui Sun
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baoyu Qi
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kai Sun
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xu Wei
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Xu Wei, ; Yong Ma, ; Liguo Zhu,
| | - Yong Ma
- School of Traditional Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Xu Wei, ; Yong Ma, ; Liguo Zhu,
| | - Liguo Zhu
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Xu Wei, ; Yong Ma, ; Liguo Zhu,
| |
Collapse
|
7
|
Keshani M, Alikiaii B, Askari G, Yahyapoor F, Ferns GA, Bagherniya M. The effects of L-carnitine supplementation on inflammatory factors, oxidative stress, and clinical outcomes in patients with sepsis admitted to the intensive care unit (ICU): study protocol for a double blind, randomized, placebo-controlled clinical trial. Trials 2022; 23:170. [PMID: 35193654 PMCID: PMC8861607 DOI: 10.1186/s13063-022-06077-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 02/02/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Sepsis is a common cause for admission to the intensive care unit (ICU), and its incidence has been increasing. It is associated with a significant increase in serum inflammatory biomarkers such as C-reactive protein (CRP) and cytokines such as interleukin 1 (IL-1), IL-6, and tumor necrosis factor (TNF). Sepsis is also associated with pathophysiological changes that include fluid accumulation in the lungs, eventually leading to acute respiratory distress syndrome (ARDS), tissue edema, hypotension, and acute kidney injury (AKI). Conventional therapies include antibiotics, but these may have important adverse effects, so novel therapeutic approaches are required. In animal studies, L-carnitine improves antioxidant status, and in some clinical trials, it has been shown to reduce inflammation. It has also been shown to improve respiratory distress and help maintain coenzyme A homeostasis, metabolic flexibility, promoting the normal function of the tricarboxylic acid (TCA) cycle, and oxidation of fatty acids by peroxisomes. We aim to determine the effects of very high doses of L-carnitine on inflammatory factors, oxidative stress, and clinical outcomes of patients with sepsis in ICU. METHOD AND DESIGN In this double-blind, randomized controlled clinical trial, we will use block randomization of 60 patients with sepsis, aged between 20 and 65 years from Al-Zahra Hospital, Isfahan, Iran. The intervention group (n = 30) will receive three capsules of L-carnitine (each capsule contains 1000 mg L-carnitine; totally 3000 mg/day) for 7 days, and a control group (n = 30) will receive a placebo with the same dose and for the same duration in addition to usual care. At baseline, scores for clinical and nutritional status (Acute Physiology and Chronic Health Evaluation II (APACHE II), Sequential Organ Failure Assessment (SOFA), Quick SOFA (qSOFA), and NUTRIC Score) will be assessed. At beginning and end point of the study, inflammatory markers (CRP, erythrocyte sedimentation rate (ESR)), oxidative stress status (total oxidative stress (TOS), total antioxidant capacity (TAC)), and clinical variables will be evaluated also. The mortality rate will be assessed within 28 days of the beginning of the intervention. DISCUSSION Because of the anti-inflammatory and antioxidant properties of L-carnitine, it is possible that using a high dose of 3000 mg daily of this nutritional supplement may reduce inflammation and oxidative stress and improve subsequent mortality of critically ill patients with sepsis. TRIAL REGISTRATION Iranian Registry of Clinical Trials IRCT20201129049534N1 . Registered on 2 May 2021.
Collapse
Affiliation(s)
- Mahdi Keshani
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Babak Alikiaii
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholamreza Askari
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.,Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farveh Yahyapoor
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex, BN1 9PH, UK
| | - Mohammad Bagherniya
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran. .,Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran. .,Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
8
|
Zozina VI, Shikh EV, Kondratenko SN, Melnikov ES, Kukes VG. The Effect of Coenzyme Q10 as a Part of Standard Therapy on Plasma Concentrations of Ubiquinol, Ubiquinone, Total CoQ10 and its Redox State in Patients with Ischemic Heart Disease. Curr Drug Metab 2022; 23:991-999. [PMID: 36420876 DOI: 10.2174/1389200224666221123092256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/25/2022] [Accepted: 09/21/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Despite CoQ10 being a powerful antioxidant and its redox state that may characterize the body's antioxidant system, the latter remains unstudied in patients with cardiovascular diseases. OBJECTIVE This prospective case-control study aimed to investigate the concentrations of ubiquinol, ubiquinone, total CoQ10 and its redox state in patients with ischemic heart disease (IHD) and arterial hypertension (AH) during standard therapy and with the additional prescription of CoQ10. METHODS The study included 54 healthy individuals and 26 patients, who were divided into a control group receiving standard therapy and a test group receiving CoQ10 in addition to standard therapy. Quantitative determination of COQ10, ubiquinone and ubiquinol was carried out by HPLC-MS/MS. RESULTS It was found that the CoQ10 level in patients was significantly lower than in healthy individuals (on average -32Δ%). In the test group, after treatment, the concentrations of ubiquinol (+53 Δ%), ubiquinone (-28 Δ%), total CoQ10 (+27 Δ%) and redox state (+112 Δ%) were significantly different from the baseline, while in the control group no significant differences were noticed. In the test group after treatment, the levels of total CoQ10 (+25 Δ%), ubiquinol (+43 Δ%), and redox state (+86 Δ%) were statistically significantly higher than in the control group and total CoQ10 concentration did not significantly differ from that in healthy individuals (-12 Δ%). CONCLUSION The additional prescription of CoQ10 for patients with IHD significantly increases the level of total CoQ10, which leads to the increase of body antioxidant potential.
Collapse
Affiliation(s)
- Vladlena I Zozina
- Department of Clinical Pharmacology and Propaedeutics of Internal Diseases, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Evgenia Valerievna Shikh
- Department of Clinical Pharmacology and Propaedeutics of Internal Diseases, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Svetlana Nikolaevna Kondratenko
- Department of Clinical Pharmacology and Propaedeutics of Internal Diseases, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Evgeny Sergeyevich Melnikov
- A.P. Arzamastsev Department of Pharmaceutical and Toxicological Chemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Vladimir Grigorievich Kukes
- Department of Clinical Pharmacology and Propaedeutics of Internal Diseases, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|