1
|
Zhao Y, Wang L, Huang Y, Evans PC, Little PJ, Tian X, Weng J, Xu S. Anthocyanins in Vascular Health and Disease: Mechanisms of Action and Therapeutic Potential. J Cardiovasc Pharmacol 2024; 84:289-302. [PMID: 39240726 DOI: 10.1097/fjc.0000000000001602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/31/2024] [Indexed: 09/08/2024]
Abstract
ABSTRACT Unhealthy lifestyles have placed a significant burden on individuals' cardiovascular health. Anthocyanins are water-soluble flavonoid pigments found in a wide array of common foods and fruits. Anthocyanins have the potential to contribute to the prevention and treatment of cardiovascular disease by improving lipid profiles and vascular function, reducing blood glucose levels and blood pressure, and inhibiting inflammation. These actions have been demonstrated in numerous clinical and preclinical studies. At the cellular and molecular level, anthocyanins and their metabolites could protect endothelial cells from senescence, apoptosis, and inflammation by activating the phosphoinositide 3-kinase/protein kinase B/endothelial nitric oxide synthases, silent information regulator 1 (SIRT1), or nuclear factor erythroid2-related factor 2 pathways and inhibiting the nuclear factor kappa B, Bax, or P38 mitogen-activated protein kinase pathways. Furthermore, anthocyanins prevent vascular smooth muscle cell from platelet-derived growth factor -induced or tumor necrosis factor-α-induced proliferation and migration by inhibiting the focal adhesion kinase and extracellular regulated protein kinases signaling pathways. Anthocyanins could also attenuate vascular inflammation by reducing the formation of oxidized lipids, preventing leukocyte adhesion and infiltration of the vessel wall, and macrophage phagocytosis of deposited lipids through reducing the expression of cluster of differentiation 36 and increasing the expression of ATP-binding cassette subfamily A member 1 and ATP-binding cassette subfamily G member 1. At the same time, anthocyanins could lower the risk of thrombosis by inhibiting platelet activation and aggregation through down-regulating P-selectin, transforming growth factor-1, and CD40L. Thus, the development of anthocyanin-based supplements or derivative drugs could provide new therapeutic approaches to the prevention and treatment of vascular diseases.
Collapse
Affiliation(s)
- Yaping Zhao
- Department of Endocrinology, Institute of Endocrine and Metabolic Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Metabolic Health and Panvascular Diseases, Hefei, Anhui, China
| | - Li Wang
- Anhui Provincial Key Laboratory of Metabolic Health and Panvascular Diseases, Hefei, Anhui, China
| | - Yu Huang
- Anhui Provincial Key Laboratory of Metabolic Health and Panvascular Diseases, Hefei, Anhui, China
| | - Paul C Evans
- Department of Biomedical Sciences, City University of Hong Kong, China
| | - Peter J Little
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Xiaoyu Tian
- School of Pharmacy, The University of Queensland, Queensland, Australia; and
| | - Jianping Weng
- Department of Endocrinology, Institute of Endocrine and Metabolic Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Metabolic Health and Panvascular Diseases, Hefei, Anhui, China
| | - Suowen Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Metabolic Health and Panvascular Diseases, Hefei, Anhui, China
| |
Collapse
|
2
|
Squires E, Walshe IH, Cheung W, Bowerbank SL, Dean JR, Wood J, McHugh MP, Plattner S, Howatson G. Plasma-Induced Changes in the Metabolome Following Vistula Tart Cherry Consumption. Nutrients 2024; 16:1023. [PMID: 38613057 PMCID: PMC11013268 DOI: 10.3390/nu16071023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Evidence suggests that tart cherry (TC) supplementation has beneficial effects on health indices and recovery following strenuous exercise. However, little is known about the mechanisms and how TC might modulate the human metabolome. The aim of this study was to evaluate the influence of an acute high- and low-dose of Vistula TC supplementation on the metabolomic profile in humans. In a randomised, double-blind, placebo controlled, cross-over design, 12 healthy participants (nine male and three female; mean ± SD age, stature, and mass were 29 ± 7 years old, 1.75 ± 0.1 m, and 77.3 ± 10.5 kg, respectively) visited the laboratory on three separate occasions (high dose; HI, low dose; LO, or placebo), separated by at least seven days. After an overnight fast, a baseline venous blood sample was taken, followed by consumption of a standardised breakfast and dose conditions (HI, LO, or placebo). Subsequent blood draws were taken 1, 2, 3, 5, and 8 h post consumption. Following sample preparation, an untargeted metabolomics approach was adopted, and the extracts analysed by LCMS/MS. When all time points were collated, a principal component analysis showed a significant difference between the conditions (p < 0.05), such that the placebo trial had homogeneity, and HI showed greater heterogeneity. In a sub-group analysis, cyanidine-3-O-glucoside (C3G), cyanidine-3-O-rutinoside (C3R), and vanillic acid (VA) were detected in plasma and showed significant differences (p < 0.05) following acute consumption of Vistula TC, compared to the placebo group. These results provide evidence that phenolics are bioavailable in plasma and induce shifts in the metabolome following acute Vistula TC consumption. These data could be used to inform future intervention studies where changes in physiological outcomes could be influenced by metabolomic shifts following acute supplementation.
Collapse
Affiliation(s)
- Emma Squires
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (E.S.); (I.H.W.); (W.C.); (S.L.B.); (J.R.D.); (J.W.); (M.P.M.)
| | - Ian H. Walshe
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (E.S.); (I.H.W.); (W.C.); (S.L.B.); (J.R.D.); (J.W.); (M.P.M.)
| | - William Cheung
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (E.S.); (I.H.W.); (W.C.); (S.L.B.); (J.R.D.); (J.W.); (M.P.M.)
| | - Samantha L. Bowerbank
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (E.S.); (I.H.W.); (W.C.); (S.L.B.); (J.R.D.); (J.W.); (M.P.M.)
| | - John R. Dean
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (E.S.); (I.H.W.); (W.C.); (S.L.B.); (J.R.D.); (J.W.); (M.P.M.)
| | - Jacob Wood
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (E.S.); (I.H.W.); (W.C.); (S.L.B.); (J.R.D.); (J.W.); (M.P.M.)
| | - Malachy P. McHugh
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (E.S.); (I.H.W.); (W.C.); (S.L.B.); (J.R.D.); (J.W.); (M.P.M.)
- Nicholas Institute of Sports Medicine and Athletic Trauma, Northwell Health, New York, NY 10065, USA
| | | | - Glyn Howatson
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (E.S.); (I.H.W.); (W.C.); (S.L.B.); (J.R.D.); (J.W.); (M.P.M.)
- Water Research Group, North West University, Potchefstroom 2531, South Africa
| |
Collapse
|
3
|
Laudani S, Godos J, Di Domenico FM, Barbagallo I, Randazzo CL, Leggio GM, Galvano F, Grosso G. Anthocyanin Effects on Vascular and Endothelial Health: Evidence from Clinical Trials and Role of Gut Microbiota Metabolites. Antioxidants (Basel) 2023; 12:1773. [PMID: 37760077 PMCID: PMC10525277 DOI: 10.3390/antiox12091773] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/13/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
Hypertension and derived cardiovascular disease (CVD) are among the leading causes of death worldwide. Increased oxidative stress and inflammatory state are involved in different alterations in endothelial functions that contribute to the onset of CVD. Polyphenols, and in particular anthocyanins, have aroused great interest for their antioxidant effects and their cardioprotective role. However, anthocyanins are rarely detected in blood serum because they are primarily metabolized by the gut microbiota. This review presents studies published to date that report the main results from clinical studies on the cardioprotective effects of anthocyanins and the role of the gut microbiota in the metabolism and bioavailability of anthocyanins and their influence on the composition of the microbiota. Even if it seems that anthocyanins have a significant effect on vascular health, more studies are required to better clarify which molecules and doses show vascular benefits without forgetting the crucial role of the microbiota.
Collapse
Affiliation(s)
- Samuele Laudani
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (S.L.); (F.M.D.D.); (I.B.); (G.M.L.); (F.G.); (G.G.)
| | - Justyna Godos
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (S.L.); (F.M.D.D.); (I.B.); (G.M.L.); (F.G.); (G.G.)
| | - Federica Martina Di Domenico
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (S.L.); (F.M.D.D.); (I.B.); (G.M.L.); (F.G.); (G.G.)
| | - Ignazio Barbagallo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (S.L.); (F.M.D.D.); (I.B.); (G.M.L.); (F.G.); (G.G.)
| | - Cinzia Lucia Randazzo
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy;
- ProBioEtna, Spin-Off of University of Catania, 95123 Catania, Italy
| | - Gian Marco Leggio
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (S.L.); (F.M.D.D.); (I.B.); (G.M.L.); (F.G.); (G.G.)
| | - Fabio Galvano
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (S.L.); (F.M.D.D.); (I.B.); (G.M.L.); (F.G.); (G.G.)
| | - Giuseppe Grosso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (S.L.); (F.M.D.D.); (I.B.); (G.M.L.); (F.G.); (G.G.)
| |
Collapse
|
4
|
Moosavian SP, Maharat M, Chambari M, Moradi F, Rahimlou M. Effects of tart cherry juice consumption on cardio-metabolic risk factors: A systematic review and meta-analysis of randomized-controlled trials. Complement Ther Med 2022; 71:102883. [PMID: 36038032 DOI: 10.1016/j.ctim.2022.102883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/19/2022] [Accepted: 08/25/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Tart cherries are rich in bioactive compounds, such as anthocyanins and other phytochemicals known to have antioxidant properties and exert cardiovascular protective effects. However, there is no definitive consensus on this context. The present systematic review and meta-analysis aimed to investigate the effect of tart cherry juice consumption on cardio-metabolic risk factors. METHODS A systematic search was conducted on electronic databases, including PubMed, Web of Science, Scopus, and Google Scholar from inception up to December 2021 to identify eligible RCT studies. A random-effect model was utilized to estimate the weighted mean difference (WMD) and 95% confidence (95% CI). RESULTS Ten RCTs were included in the present meta-analysis. The pooled analysis revealed that tart cherry juice consumption led to a significant reduction in the fasting blood sugar (FBS) levels (WMD = -0.51 mg/dl [95% CI: -0.98, -0.06]). This lowering effect of FBS was robust in subgroups with cross-over studies, participants with age range ≥ 40, duration of follow-up ≤ 4 weeks, and baseline BMI ≥ 30. In contrast, tart cherry juice had no effect on total cholesterol (TC), triglycerides (TG), high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C), insulin, body mass index (BMI), fat mass, systolic and diastolic blood pressure. However, in the subgroup analysis, some significant effects were observed for insulin, TG, TC, LDL-C, and HDL-C. CONCLUSION In summary, this meta-analysis showed that tart cherry juice mostly had a favorable effect on FBG levels. However, further RCTs with long-term intervention with different doses of administration are needed.
Collapse
Affiliation(s)
- Seyedeh Parisa Moosavian
- Department of Community Nutrition Improvement, Vice-Chancellery for Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Maharat
- Department of Community Nutrition Improvement, Vice-Chancellery for Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahla Chambari
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Fateme Moradi
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehran Rahimlou
- Department of Nutrition, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
5
|
Vendrame S, Adekeye TE, Klimis-Zacas D. The Role of Berry Consumption on Blood Pressure Regulation and Hypertension: An Overview of the Clinical Evidence. Nutrients 2022; 14:nu14132701. [PMID: 35807881 PMCID: PMC9268395 DOI: 10.3390/nu14132701] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 02/06/2023] Open
Abstract
The existence of a relationship between the consumption of dietary berries and blood pressure reduction in humans has been repeatedly hypothesized and documented by an increasing body of epidemiological and clinical evidence that has accumulated in recent years. However, results are mixed and complicated by a number of potentially confounding factors. The objective of this article is to review and summarize the available clinical evidence examining the effects of berry consumption on blood pressure regulation as well as the prevention or treatment of hypertension in humans, providing an overview of the potential contribution of distinctive berry polyphenols (anthocyanins, condensed tannins and ellagic acid), and results of dietary interventions with blueberries, bilberries, cranberries, raspberries, strawberries, chokeberries, cherries, blackcurrants and açai berries. We conclude that, while there is insufficient evidence supporting the existence of a direct blood pressure lowering effect, there is stronger evidence for specific types of berries acting indirectly to normalize blood pressure in subjects that are already hypertensive.
Collapse
|
6
|
Paapstel K, Kals J. Metabolomics of Arterial Stiffness. Metabolites 2022; 12:370. [PMID: 35629874 PMCID: PMC9146333 DOI: 10.3390/metabo12050370] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/15/2022] [Accepted: 04/18/2022] [Indexed: 12/18/2022] Open
Abstract
Arterial stiffness (AS) is one of the earliest detectable signs of structural and functional alterations of the vessel wall and an independent predictor of cardiovascular events and death. The emerging field of metabolomics can be utilized to detect a wide spectrum of intermediates and products of metabolism in body fluids that can be involved in the pathogenesis of AS. Research over the past decade has reinforced this idea by linking AS to circulating acylcarnitines, glycerophospholipids, sphingolipids, and amino acids, among other metabolite species. Some of these metabolites influence AS through traditional cardiovascular risk factors (e.g., high blood pressure, high blood cholesterol, diabetes, smoking), while others seem to act independently through both known and unknown pathophysiological mechanisms. We propose the term 'arteriometabolomics' to indicate the research that applies metabolomics methods to study AS. The 'arteriometabolomics' approach has the potential to allow more personalized cardiovascular risk stratification, disease monitoring, and treatment selection. One of its major goals is to uncover the causal metabolic pathways of AS. Such pathways could represent valuable treatment targets in vascular ageing.
Collapse
Affiliation(s)
- Kaido Paapstel
- Endothelial Research Centre, University of Tartu, 8 Puusepa Street, 51014 Tartu, Estonia;
- Department of Cardiology, Institute of Clinical Medicine, University of Tartu, 8 Puusepa Street, 51014 Tartu, Estonia
- Heart Clinic, Tartu University Hospital, 8 Puusepa Street, 51014 Tartu, Estonia
| | - Jaak Kals
- Endothelial Research Centre, University of Tartu, 8 Puusepa Street, 51014 Tartu, Estonia;
- Department of Surgery, Institute of Clinical Medicine, University of Tartu, 8 Puusepa Street, 51014 Tartu, Estonia
- Surgery Clinic, Tartu University Hospital, 8 Puusepa Street, 51014 Tartu, Estonia
- Department of Biochemistry, Institute of Biomedicine and Translational Medicine, Centre of Excellence for Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
| |
Collapse
|
7
|
Kimble R, Keane KM, Lodge JK, Cheung W, Haskell-Ramsay CF, Howatson G. Polyphenol-rich tart cherries ( Prunus Cerasus, cv Montmorency) improve sustained attention, feelings of alertness and mental fatigue and influence the plasma metabolome in middle-aged adults: a randomised, placebo-controlled trial. Br J Nutr 2022; 128:1-12. [PMID: 35109960 PMCID: PMC9723490 DOI: 10.1017/s0007114522000460] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 12/21/2021] [Accepted: 01/31/2022] [Indexed: 12/14/2022]
Abstract
Tart Montmorency cherries (MC) are a particularly rich source of anthocyanins and other polyphenols that have been shown to elicit antioxidant, anti-inflammatory and vasomodulatory actions. The current study aimed to determine the influence of chronic MC supplementation on cognitive function and mood. In a 3-month double-blinded, placebo-controlled parallel study, middle-aged adults (mean ± sd: 48 ± 6 years) were randomly assigned to either 30 ml twice daily of MC (n 25) or the same amount of an isoenergetic placebo (n 25). Cognitive function and mood were assessed before and after supplementation using a computerised cognitive task battery and visual analogue scales. Cerebral blood flow was also monitored by near-infrared spectroscopy during the task battery, and questionnaires were administered to determine subjective sleep and health status and plasma metabolomics were analysed before and after supplementation. After 3 months, the MC resulted in higher accuracy in digit vigilance (mean difference: 3·3, 95 % CI: 0·2, 6·4 %) with lower number of false alarms (mean difference: -1·2, 95 % CI: -2·0, -0·4) compared with the placebo. There was also a treatment effect for higher alertness (mean difference: 5·9, 95 % CI: 1·3, 10·5 %) and lower mental fatigue ratings (mean difference -9·5, 95 % CI: -16·5, -2·5 %) with MC. Plasma metabolomics revealed an increase in a number of amino acids in response to MC intake, but not placebo. These data suggest an anti-fatiguing effect of MC supplementation as well as the ability to improve sustained attention during times of high cognitive demand, this could be related to changes in amino acid metabolism.
Collapse
Affiliation(s)
- Rachel Kimble
- Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, UK
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Karen M. Keane
- School of Science and Computing, Galway-Mayo Institute of Technology, Galway, Ireland
| | - John K. Lodge
- Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, UK
| | - William Cheung
- Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, UK
| | | | - Glyn Howatson
- Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, UK
- Water Research Group, School of Environmental Sciences and Development, Northwest University, Potchefstroom, South Africa
| |
Collapse
|