1
|
Yeyeodu S, Hanafi D, Webb K, Laurie NA, Kimbro KS. Population-enriched innate immune variants may identify candidate gene targets at the intersection of cancer and cardio-metabolic disease. Front Endocrinol (Lausanne) 2024; 14:1286979. [PMID: 38577257 PMCID: PMC10991756 DOI: 10.3389/fendo.2023.1286979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/07/2023] [Indexed: 04/06/2024] Open
Abstract
Both cancer and cardio-metabolic disease disparities exist among specific populations in the US. For example, African Americans experience the highest rates of breast and prostate cancer mortality and the highest incidence of obesity. Native and Hispanic Americans experience the highest rates of liver cancer mortality. At the same time, Pacific Islanders have the highest death rate attributed to type 2 diabetes (T2D), and Asian Americans experience the highest incidence of non-alcoholic fatty liver disease (NAFLD) and cancers induced by infectious agents. Notably, the pathologic progression of both cancer and cardio-metabolic diseases involves innate immunity and mechanisms of inflammation. Innate immunity in individuals is established through genetic inheritance and external stimuli to respond to environmental threats and stresses such as pathogen exposure. Further, individual genomes contain characteristic genetic markers associated with one or more geographic ancestries (ethnic groups), including protective innate immune genetic programming optimized for survival in their corresponding ancestral environment(s). This perspective explores evidence related to our working hypothesis that genetic variations in innate immune genes, particularly those that are commonly found but unevenly distributed between populations, are associated with disparities between populations in both cancer and cardio-metabolic diseases. Identifying conventional and unconventional innate immune genes that fit this profile may provide critical insights into the underlying mechanisms that connect these two families of complex diseases and offer novel targets for precision-based treatment of cancer and/or cardio-metabolic disease.
Collapse
Affiliation(s)
- Susan Yeyeodu
- Julius L Chambers Biomedical/Biotechnology Institute (JLC-BBRI), North Carolina Central University, Durham, NC, United States
- Charles River Discovery Services, Morrisville, NC, United States
| | - Donia Hanafi
- Julius L Chambers Biomedical/Biotechnology Institute (JLC-BBRI), North Carolina Central University, Durham, NC, United States
| | - Kenisha Webb
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Nikia A. Laurie
- Julius L Chambers Biomedical/Biotechnology Institute (JLC-BBRI), North Carolina Central University, Durham, NC, United States
| | - K. Sean Kimbro
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| |
Collapse
|
2
|
Shkundin A, Halaris A. Associations of BDNF/BDNF-AS SNPs with Depression, Schizophrenia, and Bipolar Disorder. J Pers Med 2023; 13:1395. [PMID: 37763162 PMCID: PMC10533016 DOI: 10.3390/jpm13091395] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Brain-Derived Neurotrophic Factor (BDNF) is crucial for various aspects of neuronal development and function, including synaptic plasticity, neurotransmitter release, and supporting neuronal differentiation, growth, and survival. It is involved in the formation and preservation of dopaminergic, serotonergic, GABAergic, and cholinergic neurons, facilitating efficient stimulus transmission within the synaptic system and contributing to learning, memory, and overall cognition. Furthermore, BDNF demonstrates involvement in neuroinflammation and showcases neuroprotective effects. In contrast, BDNF antisense RNA (BDNF-AS) is linked to the regulation and control of BDNF, facilitating its suppression and contributing to neurotoxicity, apoptosis, and decreased cell viability. This review article aims to comprehensively overview the significance of single nucleotide polymorphisms (SNPs) in BDNF/BDNF-AS genes within psychiatric conditions, with a specific focus on their associations with depression, schizophrenia, and bipolar disorder. The independent influence of each BDNF/BDNF-AS gene variation, as well as the interplay between SNPs and their linkage disequilibrium, environmental factors, including early-life experiences, and interactions with other genes, lead to alterations in brain architecture and function, shaping vulnerability to mental health disorders. The potential translational applications of BDNF/BDNF-AS polymorphism knowledge can revolutionize personalized medicine, predict disease susceptibility, treatment outcomes, and guide the selection of interventions tailored to individual patients.
Collapse
Affiliation(s)
| | - Angelos Halaris
- Department of Psychiatry and Behavioral Neurosciences, Loyola University Chicago Stritch School of Medicine, Loyola University Medical Center, Maywood, IL 60153, USA
| |
Collapse
|
3
|
Sun Q, Yuan F, Ren D, Ma G, Yang F, Wu X, He L, He G. GSK-3β and BDNF genes may not be associated with venlafaxine treatment response in Chinese of Han ethnicity. Neuropsychiatr Dis Treat 2019; 15:657-661. [PMID: 30880991 PMCID: PMC6410750 DOI: 10.2147/ndt.s191376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Venlafaxine is one of the commonly prescribed antidepressants for major depressive disorder (MDD). Accumulated evidence revealed the involvement of glutamatergic system in the pathophysiology of MDD and antidepressant treatment. METHODS We recruited 193 MDD patients who have been taking venlafaxine for 6 weeks, and investigated whether single nucleotide polymorphisms (SNPs) in GSK-3β and BDNF were associated with treatment response. Nine SNPs were selected randomly depending on association studies. Efficacy of treatment was determined by 17-item Hamilton Rating Scale. Allele and genotype frequencies were compared between responders and nonresponders. RESULTS After adjusting the false discovery rate, no significant difference was observed between response and nonresponse groups in allele or genotype distributions after venlafaxine treatment for 6 weeks. CONCLUSION Our results indicated that genetic variants in the GSK-3β and BDNF may not be associated with treatment response in MDD patients treated with venlafaxine.
Collapse
Affiliation(s)
- Qianqian Sun
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, P.R. China, , .,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Institute of Mental Health, Shanghai Jiao Tong University, Shanghai 200030, P.R. China,
| | - Fan Yuan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, P.R. China, , .,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Institute of Mental Health, Shanghai Jiao Tong University, Shanghai 200030, P.R. China,
| | - Decheng Ren
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, P.R. China, , .,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Institute of Mental Health, Shanghai Jiao Tong University, Shanghai 200030, P.R. China,
| | - Gaini Ma
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, P.R. China, , .,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Institute of Mental Health, Shanghai Jiao Tong University, Shanghai 200030, P.R. China,
| | - Fengping Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, P.R. China, , .,Institute for Nutritional Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, P.R. China,
| | - Xi Wu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, P.R. China, , .,Institute for Nutritional Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, P.R. China,
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, P.R. China, , .,Institute for Nutritional Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, P.R. China,
| | - Guang He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, P.R. China, , .,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Institute of Mental Health, Shanghai Jiao Tong University, Shanghai 200030, P.R. China,
| |
Collapse
|