Matrisciano F, Pinna G. PPAR-α Hypermethylation in the Hippocampus of Mice Exposed to Social Isolation Stress Is Associated with Enhanced Neuroinflammation and Aggressive Behavior.
Int J Mol Sci 2021;
22:ijms221910678. [PMID:
34639019 PMCID:
PMC8509148 DOI:
10.3390/ijms221910678]
[Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/24/2021] [Accepted: 08/28/2021] [Indexed: 12/18/2022] Open
Abstract
Social behavioral changes, including social isolation or loneliness, increase the risk for stress-related disorders, such as major depressive disorder, posttraumatic stress disorder (PTSD), and suicide, which share a strong neuroinflammatory etiopathogenetic component. The peroxisome-proliferator activated receptor (PPAR)-α, a newly discovered target involved in emotional behavior regulation, is a ligand-activated nuclear receptor and a transcription factor that, following stimulation by endogenous or synthetic ligands, may induce neuroprotective effects by modulating neuroinflammation, and improve anxiety and depression-like behaviors by enhancing neurosteroid biosynthesis. How stress affects epigenetic mechanisms with downstream effects on inflammation and emotional behavior remains poorly understood. We studied the effects of 4-week social isolation, using a mouse model of PTSD/suicide-like behavior, on hippocampal PPAR-α epigenetic modification. Decreased PPAR-α expression in the hippocampus of socially isolated mice was associated with increased levels of methylated cytosines of PPAR-α gene CpG-rich fragments and deficient neurosteroid biosynthesis. This effect was associated with increased histone deacetylases (HDAC)1, methyl-cytosine binding protein (MeCP)2 and decreased ten-eleven translocator (TET)2 expression, which favor hypermethylation. These alterations were associated with increased TLR-4 and pro-inflammatory markers (e.g., TNF-α,), mediated by NF-κB signaling in the hippocampus of aggressive mice. This study contributes the first evidence of stress-induced brain PPAR-α epigenetic regulation. Social isolation stress may constitute a risk factor for inflammatory-based psychiatric disorders associated with neurosteroid deficits, and targeting epigenetic marks linked to PPAR-α downregulation may offer a valid therapeutic approach.
Collapse