1
|
Wen J, Guo T, Xu J, Duanmu X, Tan S, Zhang M, Xu X, Guan X. Decreased brain function and anxiety-related loops in harm-avoidance personality: a resting-state functional magnetic resonance imaging study. Brain Res Bull 2024; 220:111174. [PMID: 39701427 DOI: 10.1016/j.brainresbull.2024.111174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 11/25/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND Personality is a unique and relatively stable psychological concept that defines individual human beings. It strongly influences long-term behavioral styles such as emotional expression. This study aims to elucidate the brain functional underpinning behind personality. METHODS A total of 97 young subjects were included. All subjects completed personality, emotion, and cognition scales, and resting-state functional magnetic resonance imaging scan. All subjects were divided into subtypes of harm avoidance (HA) and reward dependence (RD) by clustering analysis. Graph theory analysis and network-based analysis were used to explore the brain functional configurations of personalities. RESULTS HA subjects showed lower network metrics (P = 0.018) and node metrics (P < 0.009). A negative component network was observed in HA subjects (P < 0.001). Functional topology metrics were negatively correlated with the HA score. The amygdala-IPG functional connectivity mediated the positive correlation between personality HA and state anxiety. CONCLUSION Personality HA is associated with decreased functional configuration, which could influence emotion by downregulating amygdala-IPG coupling. These findings provide insight into how the brain shapes personality and related emotions.
Collapse
Affiliation(s)
- Jiaqi Wen
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Guo
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingjing Xu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojie Duanmu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sijia Tan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojun Xu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Xiaojun Guan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
2
|
Dickison EM, Neo PSH, McNaughton N, Sellbom M. Examination of associations between psychopathy and neural reinforcement sensitivity theory constructs. Personal Ment Health 2024; 18:284-299. [PMID: 38752514 DOI: 10.1002/pmh.1617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 02/28/2024] [Accepted: 04/28/2024] [Indexed: 11/07/2024]
Abstract
We investigated psychopathy from the neurobiological perspective of reinforcement sensitivity theory (RST). In contrast to previous semantically derived self-report scales, we operationalised RST systems neurally with evoked electroencephalography (EEG). Participants were from a community sample weighted towards externalising psychopathology. We compared the Carver & White Behavioural Inhibition System (BIS)/Behavioural Approach System (BAS) scales with EEG responses associated with RST's systems of goal conflict (aka 'behavioural inhibition'), repulsion/outcome conflict (aka 'fight/flight/freeze') and attraction (aka 'approach'). Bivariate correlations and multiple regression analysis yielded results generally consistent with past literature for associations between psychopathy and the self-report BIS/BAS scales. There were some differences from self-report associations with neural measures of RST. With EEG measures, (1) no meaningful associations were observed between any psychopathy scales and the attraction system; (2) affective-interpersonal traits of psychopathy were negatively associated with goal conflict; (3) disinhibition-behavioural traits of psychopathy were negatively associated with goal conflict but, unexpectedly, positively associated with outcome conflict. These results indicate frontal-temporal-limbic circuit dysfunction in psychopathy as specific domains were linked to neural deficits in goal conflict processing, but there was no evidence for deficits in attraction-related processes.
Collapse
Affiliation(s)
- Ella M Dickison
- Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Phoebe S-H Neo
- Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Neil McNaughton
- Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Martin Sellbom
- Department of Psychology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
3
|
Neo PSH, McNaughton N, Sellbom M. Midfrontal conflict theta and parietal P300 are linked to a latent factor of DSM externalising disorders. PERSONALITY NEUROSCIENCE 2024; 7:e7. [PMID: 38689856 PMCID: PMC11058520 DOI: 10.1017/pen.2023.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/13/2023] [Accepted: 09/25/2023] [Indexed: 05/02/2024]
Abstract
Psychiatric illnesses form spectra rather than categories, with symptoms varying continuously across individuals, i.e., there is no clear break between health and disorder. Dimensional measures of behaviour and brain activity are promising targets for studying biological mechanisms that are common across disorders. Here, we assessed the extent to which neural measures of the sensitivity of the three biological systems in the reinforcement sensitivity theory (RST) could account for individual differences in a latent general factor estimated from symptom counts across externalising disorders (EXTs). RST explanatory power was pitted against reduced P300, a reliable indicator of externalising per previous research. We assessed 206 participants for DSM-5 EXTs (antisocial personality disorder, conduct disorder, attention-deficit/hyperactivity disorder, intermittent explosive disorder symptoms, alcohol use disorder, and cannabis use disorder). Of the final sample, 49% met diagnostic criteria for at least one of the EXTs. Electroencephalographic measures of the sensitivities of the behavioural activation system (BAS), the fight/flight/freeze system, and the behavioural inhibition system (BIS), as well as P300 were extracted from the gold bar-lemon and stop-signal tasks. As predicted, we found that low neural BIS sensitivity and low P300 were uniquely and negatively associated with our latent factor of externalising. Contrary to prediction, neural BAS/"dopamine" sensitivity was not associated with externalising. Our results provide empirical support for low BIS sensitivity and P300 as neural mechanisms common to disorders within the externalising spectrum; but, given the low N involved, future studies should seek to assess the replicability of our findings and, in particular, the differential involvement of the three RST systems.
Collapse
Affiliation(s)
- Phoebe S.-H. Neo
- Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Neil McNaughton
- Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Martin Sellbom
- Department of Psychology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
4
|
McNaughton N, Lages YV. Non-human contributions to personality neuroscience: From fish through primates - a concluding editorial overview. PERSONALITY NEUROSCIENCE 2024; 7:e5. [PMID: 38384664 PMCID: PMC10877271 DOI: 10.1017/pen.2024.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 12/02/2023] [Indexed: 02/23/2024]
Abstract
This special issue attempts to integrate personality, psychopathology, and neuroscience as means to improve understanding of specific traits and trait structures in humans. The key strategy is to dive into comparative research using a range of species to provide simple models. This strategy has, as its foundation, the fact that the most basic functions, and their supporting neural systems, are highly conserved in evolution. The papers collected in the issue show that, from fish, through rats, to primates, the homologies in brain systems and underlying functions (despite species-specific forms of expression) allow simpler cases to provide insights into the neurobiology behind more complex ones including human. Our introductory editorial paper to this special issue took a bottom-up approach, starting with the genetics of conserved brain systems and working up to cognition. Here, we deconstruct the different aspects of personality, progressing from more complex ones in primates to least complex in fish. With the primate section, we summarize papers that discuss the factors that contribute to sociability in primates and how they apply to healthy and pathological human personality traits. In the rat section, the focus is driven by psychopathology and the way that "high" strains selected for extreme behaviors can illuminate the neurobiology of motivated responses to environmental cues. The section on fish summarizes papers that look into the most fundamental emotional reactions to the environment that are governed by primitive and conserved brain structures. This raises metatheoretical questions on the nature of traits and to a section that asks "which animals have personalities." We believe that the issue as a whole provides a nuanced answer to this question and shines a new, comparative, light on the interpretation of personality structure and the effects on it of evolution.
Collapse
Affiliation(s)
- N. McNaughton
- Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Y. V. Lages
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Stendel MS, Chavez RS. Beyond the brain localization of complex traits: Distributed white matter markers of personality. J Pers 2023; 91:1140-1151. [PMID: 36273276 DOI: 10.1111/jopy.12788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 09/09/2022] [Accepted: 10/14/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Extensive work in personality neuroscience has shown mixed results in the ability to localize reliable relationships between personality traits and neuroimaging measures. However, recent work in translational neuroimaging has recognized that multifaceted psychological dispositions are not represented in discrete, highly localized brain areas. As such, standard univariate neuroimaging analyses may not be well-suited for capturing broad personality traits supported by distributed networks. METHOD The present study uses an out-of-sample predictive modeling approach to identify multivariate signatures of Big Five personality traits within the structural integrity of white matter pathways using diffusion magnetic resonance imaging. In Study 1 (N = 491), we trained a ridge regression model to predict each of the Big Five traits and tested these models in an independent hold-out subsample. RESULTS We found that models for both Neuroticism and Openness were significantly related to predictive accuracy in the hold-out sample. Study 2 (N = 108) applied Study 1's predictive models to an independent set of data collected on a different scanner and using a different Big Five scale. Here, we found that the model for Neuroticism remained a significant predictor of individual difference. CONCLUSION Our findings provide evidence that this white matter signature of Neuroticism generalizes across differences in measurement and samples.
Collapse
Affiliation(s)
- Moriah S Stendel
- Department of Psychology, University of Oregon, Eugene, Oregon, USA
| | - Robert S Chavez
- Department of Psychology, University of Oregon, Eugene, Oregon, USA
| |
Collapse
|
6
|
McNaughton N. Neuropsychological Theory as a Basis for Clinical Translation of Animal Models of Neuropsychiatric Disorder. Front Behav Neurosci 2022; 16:877633. [PMID: 35619597 PMCID: PMC9128611 DOI: 10.3389/fnbeh.2022.877633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
|
7
|
Non-human contributions to personality neuroscience – from fish through primates. An introduction to the special issue. PERSONALITY NEUROSCIENCE 2022; 5:e11. [PMID: 36258777 PMCID: PMC9549393 DOI: 10.1017/pen.2022.4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/18/2022] [Accepted: 08/24/2022] [Indexed: 11/10/2022]
Abstract
The most fundamental emotional systems that show trait control are evolutionarily old and extensively conserved. Psychology in general has benefited from non-human neuroscience and from the analytical simplicity of behaviour in those with simpler nervous systems. It has been argued that integration between personality, psychopathology, and neuroscience is particularly promising if we are to understand the neurobiology of human experience. Here, we provide some general arguments for a non-human approach being at least as productive in relation to personality, psychopathology, and their interface. Some early personality theories were directly linked to psychopathology (e.g., Eysenck, Panksepp, and Cloninger). They shared a common interest in brain systems that naturally led to the use of non-human data; behavioural, neural, and pharmacological. In Eysenck’s case, this also led to the selective breeding, at the Maudsley Institute, of emotionally reactive and non-reactive strains of rat as models of trait neuroticism or trait emotionality. Dimensional personality research and categorical approaches to clinical disorder then drifted apart from each other, from neuropsychology, and from non-human data. Recently, the conceptualizations of both healthy personality and psychopathology have moved towards a common hierarchical trait perspective. Indeed, the proposed two sets of trait dimensions appear similar and may even be eventually the same. We provide, here, an introduction to this special issue of Personality Neuroscience, where the authors provide overviews of detailed areas where non-human data inform human personality and its psychopathology or provide explicit models for translation to human neuroscience. Once all the papers in the issue have appeared, we will also provide a concluding summary of them.
Collapse
|
8
|
Latzman RD, Krueger RF, DeYoung CG, Michelini G. Connecting quantitatively derived personality-psychopathology models and neuroscience. PERSONALITY NEUROSCIENCE 2021; 4:e4. [PMID: 34909563 PMCID: PMC8640674 DOI: 10.1017/pen.2021.3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022]
Abstract
Traditionally, personality has been conceptualized in terms of dimensions of human experience - habitual ways of thinking, feeling, and behaving. By contrast, psychopathology has traditionally been conceptualized in terms of categories of disorder - disordered thinking, feeling, and behaving. The empirical literature, however, routinely shows that psychopathology does not coalesce into readily distinguishable categories. Indeed, psychopathology tends to delineate dimensions that are relatively similar to dimensions of personality. In this special issue of Personality Neuroscience, authors took up the challenge of reconceptualizing personality and psychopathology in terms of connected and interrelated dimensions, and they considered the utility of pursuing neuroscientific inquiry from this more integrative perspective. In this editorial article, we provide the relevant background to the interface between personality, psychopathology, and neuroscience; summarize contributions to the special issue; and point toward directions for continued research and refinement. All told, it is evident that quantitatively derived, integrative models of personality-psychopathology represent a particularly promising conduit for advancing our understanding of the neurobiological foundation of human experience, both functional and dysfunctional.
Collapse
Affiliation(s)
| | | | | | - Giorgia Michelini
- UCLA Semel Institute for Neuroscience & Human Behavior, Los Angeles, CA, USA
| |
Collapse
|