1
|
Zhang Z, Tang H, Du T, Yang D. The impact of copper on bone metabolism. J Orthop Translat 2024; 47:125-131. [PMID: 39021399 PMCID: PMC466973 DOI: 10.1016/j.jot.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/08/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024] Open
Abstract
Copper is an essential trace element for the human body. Abnormalities in copper metabolism can lead to bone defects, mainly by directly affecting the viability of osteoblasts and osteoclasts and their bone remodeling function, or indirectly regulating bone metabolism by influencing enzyme activities as cofactors. Copper ions released from biological materials can affect osteoblasts and osteoclasts, either directly or indirectly by modulating the inflammatory response, oxidative stress, and rapamycin signaling. This review presents an overview of recent progress in the impact of copper on bone metabolism. Translational potential of this article: The impact of copper on bone metabolism can provide insights into clinical application of copper-containing supplements and biomaterials.
Collapse
Affiliation(s)
- Zihan Zhang
- Liaoning Provincial Key Laboratory of Oral Disease, Department of Endodontics, School and Hospital of Stomatology, China Medical University, Shenyang, 110002, China
| | - Huixue Tang
- Liaoning Provincial Key Laboratory of Oral Disease, Department of Endodontics, School and Hospital of Stomatology, China Medical University, Shenyang, 110002, China
| | - Tingting Du
- Liaoning Provincial Key Laboratory of Oral Disease, Department of Endodontics, School and Hospital of Stomatology, China Medical University, Shenyang, 110002, China
| | - Di Yang
- Liaoning Provincial Key Laboratory of Oral Disease, Department of Endodontics, School and Hospital of Stomatology, China Medical University, Shenyang, 110002, China
| |
Collapse
|
2
|
Bhadada S, Malhotra B, Shetty A, Mukherjee S. Metabolic bone disease heralding the diagnosis of Wilson's disease. BMJ Case Rep 2023; 16:e252290. [PMID: 37491126 PMCID: PMC10373720 DOI: 10.1136/bcr-2022-252290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023] Open
Abstract
We report a short-statured, young man in his 20s presenting with bilateral cataract, recurrent kidney stones, history of refractory rickets and bone deformity. He had been consuming calcium and vitamin D supplements and had been operated for cataract and renal stone disease, prior to reporting in our clinic without any significant laboratory or clinical improvement. The patient was diagnosed as having Fanconi's syndrome attributable to Wilson's disease. This patient highlights that in case of resistant rickets, a high index of suspicion must be invoked for Wilson's disease. Timely recognition of this entity results in prompt ministrations and prevention of disability.
Collapse
Affiliation(s)
- Sanjay Bhadada
- Endocrinology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Bhanu Malhotra
- Endocrinology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Anirudh Shetty
- Endocrinology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Soham Mukherjee
- Endocrinology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
3
|
Humphries M, Benitez-Nelson N, Combrink X. Trace Metal Accumulation in Eggs of Wild Nile Crocodiles (Crocodylus niloticus) from Lake St Lucia, South Africa: Implications for Biomonitoring in a Global Biodiversity Hotspot. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 83:214-225. [PMID: 36171509 DOI: 10.1007/s00244-022-00960-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Nile crocodiles (Crocodylus niloticus) at Lake St Lucia, South Africa, have some of the highest blood lead (Pb) concentrations ever recorded in wildlife globally. Although exposure to Pb is known to pose major risks to wildlife reproductive success, potential impacts on crocodile reproduction at Lake St Lucia have yet to be examined. In this study, we investigated the accumulation of Pb and other trace metals (Al, V, Cr, Co, Cu, Ni, Zn and Cd) in eggs (n = 20) collected from five wild crocodile nests at Lake St Lucia. All metals analysed in this study were detected in egg contents, although concentrations varied considerably among nests and within clutches. Lead was detected in the contents of all eggs, but only at relatively low concentrations (43 ± 26 ng g-1 dry weight). Although sampling limitations commonly associated with wild population surveys prevent a complete assessment of exposure variability, our findings suggest maternal transfer may not be a significant depuration pathway for Pb and females possibly clear Pb through other mechanisms (e.g. sequestration into claws, bone and osteoderms). Metal concentrations in eggshells and shell membranes were poorly correlated with concentrations measured in egg content and thus do not provide viable non-lethal indicators for monitoring metal exposure in Nile crocodiles. Intra-clutch variability accounted for a considerable proportion of the total variance in egg content metal concentrations, suggesting the "one egg" sampling strategy often applied in reptile studies may not be an effective biomonitoring tool for wild crocodilian populations. Although maternally derived Pb does not appear to present widespread toxicological concern at Lake St Lucia, adverse effects of Pb exposure on other reproductive functions (e.g. spermatogenesis) cannot be discounted and warrant further investigation.
Collapse
Affiliation(s)
- Marc Humphries
- School of Chemistry, University of the Witwatersrand, Johannesburg, South Africa.
| | - Noah Benitez-Nelson
- School of Chemistry, University of the Witwatersrand, Johannesburg, South Africa
| | - Xander Combrink
- Department of Nature Conservation, Tshwane University of Technology, Pretoria, South Africa
| |
Collapse
|
4
|
O’Connor JP, Kanjilal D, Teitelbaum M, Lin SS, Cottrell JA. Zinc as a Therapeutic Agent in Bone Regeneration. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2211. [PMID: 32408474 PMCID: PMC7287917 DOI: 10.3390/ma13102211] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/03/2020] [Accepted: 05/08/2020] [Indexed: 11/28/2022]
Abstract
Zinc is an essential mineral that is required for normal skeletal growth and bone homeostasis. Furthermore, zinc appears to be able to promote bone regeneration. However, the cellular and molecular pathways through which zinc promotes bone growth, homeostasis, and regeneration are poorly understood. Zinc can positively affect chondrocyte and osteoblast functions, while inhibiting osteoclast activity, consistent with a beneficial role for zinc in bone homeostasis and regeneration. Based on the effects of zinc on skeletal cell populations and the role of zinc in skeletal growth, therapeutic approaches using zinc to improve bone regeneration are being developed. This review focuses on the role of zinc in bone growth, homeostasis, and regeneration while providing an overview of the existing studies that use zinc as a bone regeneration therapeutic.
Collapse
Affiliation(s)
- J. Patrick O’Connor
- Department of Orthopaedics, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA;
- School of Graduate Studies, Rutgers, the State University of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA; (D.K.); (M.T.)
| | - Deboleena Kanjilal
- School of Graduate Studies, Rutgers, the State University of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA; (D.K.); (M.T.)
| | - Marc Teitelbaum
- School of Graduate Studies, Rutgers, the State University of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA; (D.K.); (M.T.)
| | - Sheldon S. Lin
- Department of Orthopaedics, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA;
- School of Graduate Studies, Rutgers, the State University of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA; (D.K.); (M.T.)
| | - Jessica A. Cottrell
- Department of Biological Sciences, Seton Hall University, 400 South Orange Avenue, South Orange, NJ 07079, USA;
| |
Collapse
|
5
|
Zhang Y, Yu H, Bao W, Ni W, Dong Y, Wu ZY. A cephalometric study in patients with Wilson’s disease. J Clin Neurosci 2019; 67:105-108. [DOI: 10.1016/j.jocn.2019.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/26/2019] [Accepted: 06/09/2019] [Indexed: 11/24/2022]
|
6
|
Komiya R, Wada T, Tsushima F, Sakamoto K, Ikeda T, Yamaguchi A, Harada H, Uo M. Quantitation and distribution of metallic elements in sequestra of medication-related osteonecrosis of jaw (MRONJ) using inductively coupled plasma atomic emission spectroscopy and synchrotron radiation X-ray fluorescence analysis. J Bone Miner Metab 2019; 37:676-684. [PMID: 30465092 DOI: 10.1007/s00774-018-0975-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/25/2018] [Indexed: 10/27/2022]
Abstract
Medication-related osteonecrosis of the jaw (MRONJ) is a serious adverse effect of antiresorptive agents like bisphosphonates. Abnormal concentrations of various trace metallic elements contained in bone minerals have been associated with MRONJ. In this study, we focused on trace metallic elements contained in the MRONJ sequestrum; their content and distribution were compared to those in osteomyelitis and non-inflammatory bones using inductively coupled plasma atomic emission spectroscopy (ICP-AES) and synchrotron radiation X-ray fluorescence analysis (SR-XRF). On ICP-AES analyses, various trace elements (Co, Cr, Cu, Fe, K, Mg, Ni, Sb, Ti, V, Pb) were significantly more in MRONJ sequestra than non-inflammatory bones. The Cu content was significantly higher in MRONJ sequestra than osteomyelitis and non-inflammatory bones. The Cu content in MRONJ sequestra was high even after decalcification. Additionally, Cu was distributed along the trabecular structures in decalcified MRONJ specimens, as observed using SR-XRF analysis. Therefore, this study was indicative of the characteristic behavior of Cu in MRONJ.
Collapse
Affiliation(s)
- Ruri Komiya
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, Japan
| | - Takahiro Wada
- Department of Advanced Biomaterials, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, Japan
| | - Fumihiko Tsushima
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, Japan
| | - Kei Sakamoto
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, Japan
| | - Tohru Ikeda
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, Japan
| | - Akira Yamaguchi
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, Japan
- Oral Health Science Center, Tokyo Dental College, 2-9-18, Misakicho, Chiyoda-Ku, Tokyo, 101-0061, Japan
| | - Hiroyuki Harada
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, Japan
| | - Motohiro Uo
- Department of Advanced Biomaterials, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, Japan.
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|