1
|
Younes M, Aquilina G, Castle L, Engel K, Fowler P, Frutos Fernandez MJ, Fürst P, Gürtler R, Gundert‐Remy U, Husøy T, Mennes W, Shah R, Waalkens‐Berendsen I, Wölfle D, Boon P, Tobback P, Wright M, Aguilera J, Rincon AM, Tard A, Moldeus P. Re-evaluation of l(+)-tartaric acid (E 334), sodium tartrates (E 335), potassium tartrates (E 336), potassium sodium tartrate (E 337) and calcium tartrate (E 354) as food additives. EFSA J 2020; 18:e06030. [PMID: 32874248 PMCID: PMC7448015 DOI: 10.2903/j.efsa.2020.6030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The EFSA Panel on Food Additives and Flavourings (FAF) provides a scientific opinion on tartaric acid-tartrates (E 334-337, 354) when used as food additives. The Scientific Committee for Food (SCF) in 1990 established an acceptable daily intake (ADI) of 30 mg/kg body weight (bw) per day, for l(+)-tartaric acid and its potassium and sodium salts. The metabolism of l(+)-tartaric acid and its potassium sodium salt was shown to be species dependent, with a greater absorption in rats than in humans. No toxic effects, including nephrotoxicity, were observed in toxicological studies in which the l(+)-form was tested. There was no indication for a genotoxic potential of tartaric acid and its sodium and potassium salts. In a chronic study in rats, no indication for carcinogenicity of monosodium l(+)-tartrate was reported at the highest dose tested (3,100 mg/kg bw per day). The available studies for maternal or developmental toxicity did not report any relevant effects; no studies for reproductive toxicity were available; however, no effects on reproductive organs were observed in the chronic toxicity study. The Panel concluded that the data on systemic availability were robust enough to derive a chemical-specific uncertainty factor instead of the usual default uncertainty factor of 100. A total uncertainty factor of 10 was derived by applying a total interspecies uncertainty factor of 1 instead of 10, based on data showing lower internal exposure in humans compared to rats. The Panel established a group ADI for l(+)-tartaric acid-tartrates (E 334-337 and E 354) of 240 mg/kg bw per day, expressed as tartaric acid, by applying the total uncertainty factor of 10 to the reference point of 3,100 mg sodium tartrate/kg bw per day, approximately to 2,440 mg tartaric acid/kg bw per day. The exposure estimates for the different population groups for the refined non-brand-loyal exposure scenario did not exceed the group ADI of 240 mg/kg bw per day, expressed as tartaric acid. Some recommendations were made by the Panel.
Collapse
|
2
|
Gore E, Mardon J, Lebecque A. Draining and salting as responsible key steps in the generation of the acid-forming potential of cheese: Application to a soft blue-veined cheese. J Dairy Sci 2016; 99:6927-6936. [PMID: 27344382 DOI: 10.3168/jds.2016-11094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/15/2016] [Indexed: 11/19/2022]
Abstract
A disregarded nutritional feature of cheeses is their high acid-forming potential when ingested, which is associated with deleterious effects on consumers' health. This work aimed to characterize the acid-forming potential of a blue-veined cheese during manufacturing to identify the main steps of the process involved in this phenomenon. Sampling was performed on 3 batches at 10 steps of the cheese-making process: reception of raw milk, pasteurization, maturation of milk, coagulation, stirring, draining of the curds, and 4 ripening stages: 21, 28, 42, and 56d. The acid-forming potential of each sample was evaluated by (1) the calculation of the potential renal acid load (PRAL) index (considering protein, Cl, P, Na, K, Mg, and Ca contents), and (2) its organic anion content (lactate and citrate), considered as alkalinizing elements. Draining and salting were identified as the main steps responsible for generation of the acid-forming potential of cheese. The draining process induced an increase in the PRAL index from 1.2mEq/100g in milk to 10.4mEq/100g in drained curds due to the increase in dry matter and the loss of alkaline minerals into the whey. The increase in PRAL value (20.3mEq/100g at d 56) following salting resulted from an imbalance between the strong acidogenic elements (Cl, P, and proteins) and the main alkalinizing ones (Na and Ca). Particularly, Cl had a major effect on the PRAL value. Regarding organic anions, draining induced a loss of 93% of the citrate content in initial milk. The lactate content increased as fermentation occurred (1,297.9mg/100g in drained curds), and then decreased during ripening (519.3mg/100g at d 56). This lactate level probably helps moderate the acidifying potential of end products. Technological strategies aimed at limiting the acid-forming potential of cheeses are proposed and deserve further research to evaluate their nutritional relevance.
Collapse
Affiliation(s)
- Ecaterina Gore
- Clermont University, VetAgro Sup, UPSP n°2011-03-100, CALITYSS, 89 avenue Europe, F-63370 Lempdes, France
| | - Julie Mardon
- Clermont University, VetAgro Sup, UPSP n°2011-03-100, CALITYSS, 89 avenue Europe, F-63370 Lempdes, France.
| | - Annick Lebecque
- Clermont University, VetAgro Sup, UPSP n°2011-03-100, CALITYSS, 89 avenue Europe, F-63370 Lempdes, France
| |
Collapse
|
3
|
Gore E, Mardon J, Guerinon D, Lebecque A. Exploratory study of acid-forming potential of commercial cheeses: impact of cheese type. Int J Food Sci Nutr 2016; 67:412-21. [DOI: 10.3109/09637486.2016.1166188] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Ecaterina Gore
- VetAgro Sup – Campus agronomique de Clermont, CALITYSS, Europe Avenue, BP-35, Lempdes, France
| | - Julie Mardon
- VetAgro Sup – Campus agronomique de Clermont, CALITYSS, Europe Avenue, BP-35, Lempdes, France
| | - Delphine Guerinon
- VetAgro Sup – Campus agronomique de Clermont, CALITYSS, Europe Avenue, BP-35, Lempdes, France
| | - Annick Lebecque
- VetAgro Sup – Campus agronomique de Clermont, CALITYSS, Europe Avenue, BP-35, Lempdes, France
| |
Collapse
|
4
|
|
5
|
Mardon J, Trzeciakiewicz A, Habauzit V, Davicco MJ, Lebecque P, Mercier S, Tressol JC, Horcajada MN, Demigné C, Coxam V. Dietary protein supplementation increases peak bone mass acquisition in energy-restricted growing rats. Pediatr Res 2009; 66:513-8. [PMID: 19668107 DOI: 10.1203/pdr.0b013e3181b9b4bb] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Peak bone mass is a major determinant of osteoporosis pathogenesis during aging. Respective influences of energy and protein supplies on skeletal growth remains unclear. We investigated the effect of a 5-mo dietary restriction on bone status in young rats randomized into six groups (n = 10 per group). Control animals were fed a diet containing a normal (13%) (C-NP) or a high-protein content (26%) (C-HP). The other groups received a 40% protein energy-restricted diet (PER-NP and PER-HP) or a 40% energy-restricted diet (ER-NP and ER-HP). High-protein intake did not modulate bone acquisition, although a metabolic acidosis was induced and calcium retention impaired. PER and ER diets were associated with a decrease in femoral bone mineral density. The compensation for protein intake in energy-restricted conditions induced a bone sparing effect. Plasma osteocalcin (OC) and urinary deoxypyridinoline (DPD) assays revealed a decreased OC/DPD ratio in restricted rats compared with C animals, which was far more reduced in PER than in ER groups. Circulating IGF-1 levels were lowered by dietary restrictions. In conclusion, both energy and protein deficiencies may contribute to impairment in peak bone mass acquisition, which may affect skeleton strength and potentially render individuals more susceptible to osteoporosis.
Collapse
Affiliation(s)
- Julie Mardon
- Unité de Nutrition Humaine UMR1019, INRA Clermont-Ferrand/Theix, Saint Genès Champanelle, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Mardon J, Habauzit V, Trzeciakiewicz A, Davicco MJ, Lebecque P, Mercier S, Tressol JC, Horcajada MN, Demigné C, Coxam V. Influence of high and low protein intakes on age-related bone loss in rats submitted to adequate or restricted energy conditions. Calcif Tissue Int 2008; 82:373-82. [PMID: 18437274 DOI: 10.1007/s00223-008-9125-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Accepted: 03/12/2008] [Indexed: 10/22/2022]
Abstract
Low energy and protein intake has been suggested to contribute to the increased incidence of osteoporosis in the elderly. The impact of dietary protein on bone health is still a matter of debate. Therefore, we examined the effect of the modulation of protein intake under adequate or deficient energy conditions on bone status in 16-month-old male rats. The animals were randomly allocated to six groups (n = 10/group). Control animals were fed a diet providing either a normal-protein content (13%, C-NP) or a high-protein content (26%) (C-HP). The other groups received a 40% protein/energy-restricted diet (PER-NP and PER-HP) or a normal protein/energy-restricted diet (ER-NP and ER-HP). After 5 months of the experiment, protein intake (13% or 26%) did not modulate calcium retention or bone status in those rats, although a low-grade metabolic acidosis was induced with the HP diet. Both restrictions (PER and ER) decreased femoral bone mineral density and fracture load. Plasma osteocalcin and urinary deoxypyridinoline levels were lowered, suggesting a decrease in bone turnover in the PER and ER groups. Circulating insulin-like growth factor-I levels were also lowered by dietary restrictions, together with calcium retention. Adequate protein intake in the ER condition did not elicit any bone-sparing effect compared to PER rats. In conclusion, both energy and protein deficiencies may contribute to age-related bone loss. This study highlights the importance of sustaining adequate energy and protein provision to preserve skeletal integrity in the elderly.
Collapse
Affiliation(s)
- Julie Mardon
- Unité de Nutrition Humaine UMR1019, Institut National de la Recherche Agronomique Clermont-Ferrand/Theix, Saint Genes Champanelle, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Mardon J, Habauzit V, Trzeciakiewicz A, Davicco MJ, Lebecque P, Mercier S, Tressol JC, Horcajada MN, Demigné C, Coxam V. Long-term intake of a high-protein diet with or without potassium citrate modulates acid-base metabolism, but not bone status, in male rats. J Nutr 2008; 138:718-24. [PMID: 18356326 DOI: 10.1093/jn/138.4.718] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
High dietary protein intake generates endogenous acid production, which may adversely affect bone health. Alkaline potassium citrate (Kcit)(2) may contribute to the neutralization of the protein-induced metabolic acidosis. We investigated the impact of 2 levels of protein intake and Kcit supplementation on acid-base metabolism and bone status in rats. Two-month-old Wistar male rats were randomly assigned to 4 groups (n = 30 per group). Two groups received a normal-protein content (13%) (NP) or a high-protein (HP) content diet (26%) for 19 mo. The 2 other groups received identical diets supplemented with Kcit (3.60%) (NPKcit and HPKcit). Rats were pair-fed based on the ad libitum intake of the HP group. At 9, 16, and 21 mo of age, 10 rats of each group were killed. The HP diet induced a metabolic acidosis characterized by hypercalciuria, hypermagnesuria, and hypocitraturia at all ages. Kcit supplementation neutralized this effect, as evidenced by decreased urinary calcium and magnesium excretion by the HPKcit rats. Femoral bone mineral density, biomechanical properties, bone metabolism biomarkers (osteocalcin and deoxypyridinoline), and plasma insulin-like growth factor 1 levels were not affected by the different diets. Nevertheless, at 21 mo of age, calcium retention was reduced in the HP group. This study suggests that lifelong excess of dietary protein results in low-grade metabolic acidosis without affecting the skeleton, which may be protected by an adequate calcium supply.
Collapse
Affiliation(s)
- Julie Mardon
- Unité de Nutrition Humaine UMR1019, INRA Clermont-Ferrand/Theix, 63122 Saint Genès Champanelle, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Machado NADG, Fonseca RB, Branco CA, Barbosa GAS, Fernandes Neto AJ, Soares CJ. Dental wear caused by association between bruxism and gastroesophageal reflux disease: a rehabilitation report. J Appl Oral Sci 2007; 15:327-33. [PMID: 19089153 DOI: 10.1590/s1678-77572007000400016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Accepted: 08/02/2007] [Indexed: 11/22/2022] Open
|