1
|
Nattagh-Eshtivani E, Barghchi H, Pahlavani N, Barati M, Amiri Y, Fadel A, Khosravi M, Talebi S, Arzhang P, Ziaei R, Ghavami A. Biological and pharmacological effects and nutritional impact of phytosterols: A comprehensive review. Phytother Res 2021; 36:299-322. [PMID: 34729825 DOI: 10.1002/ptr.7312] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 09/01/2021] [Accepted: 09/30/2021] [Indexed: 12/20/2022]
Abstract
Phytosterols (PSs), classified into plant sterols and stanols, are bioactive compounds found in foods of plant origin. PSs have been proposed to exert a wide number of pharmacological properties, including the potential to reduce total and low-density lipoprotein (LDL) cholesterol levels and thereby decreasing the risk of cardiovascular diseases. Other health-promoting effects of PSs include anti-obesity, anti-diabetic, anti-microbial, anti-inflammatory, and immunomodulatory effects. Also, anticancer effects have been strongly suggested, as phytosterol-rich diets may reduce the risk of cancer by 20%. The aim of this review is to provide a general overview of the available evidence regarding the beneficial physiological and pharmacological activities of PSs, with special emphasis on their therapeutic potential for human health and safety. Also, we will explore the factors that influence the physiologic response to PSs.
Collapse
Affiliation(s)
- Elyas Nattagh-Eshtivani
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hanieh Barghchi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Naseh Pahlavani
- Nutrition and Biochemistry Department, School of Medicine, Social Development and Health Promotion Research Center, Gonabad University of Medical Sciences, Gonabad, Iran.,Department of Clinical Biochemistry and Nutrition, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mehdi Barati
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yasaman Amiri
- Medical School, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Abdulmannan Fadel
- School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Maryam Khosravi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeedeh Talebi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pishva Arzhang
- Department of Biochemistry and Diet Therapy, Faculty of Nutritional Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rahele Ziaei
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abed Ghavami
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
2
|
Ghaedi E, Foshati S, Ziaei R, Beigrezaei S, Kord-Varkaneh H, Ghavami A, Miraghajani M. Effects of phytosterols supplementation on blood pressure: A systematic review and meta-analysis. Clin Nutr 2019; 39:2702-2710. [PMID: 31902603 DOI: 10.1016/j.clnu.2019.12.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 12/04/2019] [Accepted: 12/11/2019] [Indexed: 02/01/2023]
Abstract
Several reports have indicated a positive effect of phytosterols on blood pressure (BP), nevertheless these findings have been controversial. Therefore, a systematic review and meta-analysis of randomized controlled trials (RCTs) was aimed to investigate the effects of phytosterol supplementation on BP. An online search was carried out in PubMed, Scopus, ISI Web of Science, Cochrane library and Google Scholar up to May 2019. Weighted Mean difference (WMD) with 95% confidence intervals (CIs) were calculated using a fixed-effects model. The present meta-analysis of 19 RCTs showed that supplementation with phytosterols can decrease both systolic BP (WMD: -1.55 mmHg, 95% CI: -2.67 to -0.42, p = 0.007) and diastolic BP (WMD: -0.84 mmHg, 95% CI: -1.60 to -0.08, p = 0.03). Dose-response analysis revealed that phytosterol intake change SBP significantly based on treatment dose in nonlinear fashion. Subgroup analysis based on duration showed a significant effect of phytosterol on SBP and DBP in subsets of <12 weeks. In addition, a significant effect of phytosterol was observed in dosage of ≥2000 mg for SBP and <2000 mg for DBP. Based on current findings supplementation with phytosterol may be a beneficial adjuvant therapy in hypertensive patients as well as a complementary preventive option in prehypertensive and normotensive individuals. However, this issue is still open and requires further investigation in future studies.
Collapse
Affiliation(s)
- Ehsan Ghaedi
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran; Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Sahar Foshati
- Food Security Research Center, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rahele Ziaei
- Food Security Research Center, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sara Beigrezaei
- Nutrition and Food Security Research Center, Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hamed Kord-Varkaneh
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abed Ghavami
- Food Security Research Center, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Maryam Miraghajani
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; The Early Life Research Unit, Division of Child Health, Obstetrics and Gynaecology, University of Nottingham, Nottingham, UK.
| |
Collapse
|
3
|
Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol 2017; 92:1453-1469. [PMID: 29275510 DOI: 10.1007/s00204-017-2150-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/14/2017] [Indexed: 12/24/2022]
Abstract
Experimental and/or epidemiological studies suggest that prenatal exposure to bisphenol A (BPA) may delay fetal lung development and maturation and increase the susceptibility to childhood respiratory disease. However, the underlying mechanisms remain to be elucidated. In our previous study with cultured human fetal lung fibroblasts (HFLF), we demonstrated that 24-h exposure to 1 and 100 µM BPA increased GPR30 protein in the nuclear fraction. Exposure to 100 μM BPA had no effects on cell viability, but increased cytoplasmic expression of ERβ and release of GDF-15, as well as decreased release of IL-6, ET-1, and IP-10 through suppression of NFκB phosphorylation. By performing global gene expression and pathway analysis in this study, we identified molecular pathways, gene networks, and key molecules that were affected by 100, but not 0.01 and 1 µM BPA in HFLF. Using multiple genomic and proteomic tools, we confirmed these changes at both gene and protein levels. Our data suggest that 100 μM BPA increased CYP1B1 and HSD17B14 gene and protein expression and release of endogenous estradiol, which was associated with increased ROS production and DNA double-strand breaks, upregulation of genes and/or proteins in steroid synthesis and metabolism, and activation of Nrf2-regulated stress response pathways. In addition, BPA activated ATM-p53 signaling pathway, resulting in increased cell cycle arrest at G1 phase, senescence and autophagy, and decreased cell proliferation in HFLF. The results suggest that prenatal exposure to BPA at certain concentrations may affect fetal lung development and maturation, and thereby affecting susceptibility to childhood respiratory diseases.
Collapse
|
4
|
Dmitrieva RI, Cranford SM, Doris PA. Genetic Control of Serum Marinobufagenin in the Spontaneously Hypertensive Rat and the Relationship to Blood Pressure. J Am Heart Assoc 2017; 6:e006704. [PMID: 28982675 PMCID: PMC5721872 DOI: 10.1161/jaha.117.006704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/23/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND We have investigated serum levels of immunoreactive marinobufagenin (MBG) in 16- to 20-week-old spontaneously hypertensive rats (SHRs)-A3 and in the normotensive Wistar-Kyoto (WKY) rat strain in the absence of salt loading, and we have investigated the genetic control of serum MBG. METHODS AND RESULTS We genotyped the F2 progeny of an SHR-A3×WKY intercross using a genome-wide panel of 253 single-nucleotide polymorphism markers that were dimorphic between SHR-A3 and WKY and measured serum MBG by ELISA. Serum MBG levels were lower in SHR-A3 than WKY rats (0.39±0.07 and 1.27±0.40 nmol/L, respectively), suggesting that MBG may not play a role in the markedly divergent blood pressure measured by telemetry in rats of these 2 strains (SHR-A3 and WKY, 198.3±4.43 and 116.8±1.51 mm Hg, respectively). The strain difference in serum MBG was investigated to determine whether genomic regions influencing MBG might be identified by genetic mapping. Quantitative trait locus mapping indicated a single locus influencing serum MBG in the region of chromosome 6q12. Homozygosity of WKY alleles at this locus was associated with increased serum MBG levels. We surveyed whole genome sequences from our SHR-A3 and WKY lines, seeking coding sequence variation between SHR-A3 and WKY within the mapped locus that might explain the inherited strain difference in serum MBG. CONCLUSIONS We identified amino acid substitution in the sterol transport protein Abcg5, present in SHR-A3, but absent in WKY, that is a potential mechanism influencing MBG levels.
Collapse
Affiliation(s)
- Renata I Dmitrieva
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, TX
| | - Stacy M Cranford
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, TX
| | - Peter A Doris
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, TX
| |
Collapse
|
5
|
Randomized controlled trial of the effect of phytosterols-enriched low-fat milk on lipid profile in Chinese. Sci Rep 2017; 7:41084. [PMID: 28117400 PMCID: PMC5259797 DOI: 10.1038/srep41084] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 12/13/2016] [Indexed: 11/21/2022] Open
Abstract
Phytosterols found naturally in plants are known to reduce cholesterol absorption in the gut. The traditional southern Chinese diet typically contains many vegetables and not much meat, and there is high prevalence of lactose intolerance in Chinese; we therefore aimed to test if phytosterols-enriched milk is effective in lowering serum LDL-cholesterol in Chinese. Two hundred and twenty-one participants (41 men and 180 women; age 24–79) without cholesterol-lowering drugs or diabetes mellitus were randomized to daily intake of phytosterols-enriched low-fat milk which contained 1.5 g phytosterols per day (N = 110) or a conventional low-fat milk (N = 111) for three weeks. Fasting bloods were taken before and at the end of the study for the measurement of lipid and glucose profile. Physical examination was also performed. Comparing treatment with control, treatment group had significant decrease in serum LDL-cholesterol level (9.5 ± 2.0%; p < 0.0001). Phytosterols intake also decreased total cholesterol (P < 0.0001) and diastolic blood pressure (P = 0.01). Consumption of a phytosterols-enriched low-fat milk led to a significant fall in LDL-cholesterol, total cholesterol, and diastolic blood pressure in Chinese. This can be recommended as part of a healthy diet for people. (ClinicalTrials.gov identifier: NCT02541201; Date of registration: 26 Aug 2015).
Collapse
|
6
|
Chepelev NL, Enikanolaiye MI, Chepelev LL, Almohaisen A, Chen Q, Scoggan KA, Coughlan MC, Cao XL, Jin X, Willmore WG. Bisphenol A Activates the Nrf1/2-Antioxidant Response Element Pathway in HEK 293 Cells. Chem Res Toxicol 2013; 26:498-506. [DOI: 10.1021/tx400036v] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | | | | | - QiXuan Chen
- Nutrition Research Division, Food
Directorate, HPFB, Health Canada, Ottawa,
Ontario K1A OK9, Canada
| | - Kylie A. Scoggan
- Nutrition Research Division, Food
Directorate, HPFB, Health Canada, Ottawa,
Ontario K1A OK9, Canada
- Department of Biochemistry,
Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Melanie C. Coughlan
- Toxicology Research Division,
Food Directorate, HPFB, Health Canada,
Ottawa, Ontario K1A OL2, Canada
| | - Xu-Liang Cao
- Food Research Division, Food Directorate,
HPFB, Health Canada, Ottawa, Ontario K1A
OL2, Canada
| | - Xiaolei Jin
- Toxicology Research Division,
Food Directorate, HPFB, Health Canada,
Ottawa, Ontario K1A OL2, Canada
| | | |
Collapse
|
7
|
Ehlers PI, Kivimäki AS, Siltari A, Turpeinen AM, Korpela R, Vapaatalo H. Plant sterols and casein-derived tripeptides attenuate blood pressure increase in spontaneously hypertensive rats. Nutr Res 2012; 32:292-300. [DOI: 10.1016/j.nutres.2012.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Revised: 03/01/2012] [Accepted: 03/12/2012] [Indexed: 11/16/2022]
|
8
|
Abstract
It is well established that plant phenolics elicit various biological activities, with positive effects on health. Palm oil production results in large volumes of aqueous by-products containing phenolics. In the present study, we describe the effects of oil palm phenolics (OPP) on several degenerative conditions using various animal models. OPP reduced blood pressure in a NO-deficient rat model, protected against ischaemia-induced cardiac arrhythmia in rats and reduced plaque formation in rabbits fed an atherogenic diet. In Nile rats, a spontaneous model of the metabolic syndrome and type 2 diabetes, OPP protected against multiple aspects of the syndrome and diabetes progression. In tumour-inoculated mice, OPP protected against cancer progression. Microarray studies on the tumours showed differential transcriptome profiles that suggest anti-tumour molecular mechanisms involved in OPP action. Thus, initial studies suggest that OPP may have potential against several chronic disease outcomes in mammals.
Collapse
|
9
|
High blood pressure-lowering and vasoprotective effects of milk products in experimental hypertension. Br J Nutr 2011; 106:1353-63. [DOI: 10.1017/s0007114511001723] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Milk casein-derived angiotensin-converting enzyme (ACE)-inhibitory tripeptides isoleucine-proline-proline (Ile-Pro-Pro) and valine-proline-proline (Val-Pro-Pro) have been shown to have antihypertensive effects in human subjects and to attenuate the development of hypertension in experimental models. The aim of the present study was to investigate the effect of a fermented milk product containing Ile-Pro-Pro and Val-Pro-Pro and plant sterols on already established hypertension, endothelial dysfunction and aortic gene expression. Male spontaneously hypertensive rats (SHR) with baseline systolic blood pressure (SBP) of 195 mmHg were given either active milk (tripeptides and plant sterols), milk or water ad libitum for 6 weeks. SBP was measured weekly by the tail-cuff method. The endothelial function of mesenteric arteries was investigated at the end of the study. Aortas were collected for DNA microarray study (Affymetrix Rat Gene 1.0 ST Array). The main finding was that active milk decreased SBP by 16 mmHg compared with water (178 (sem 3) v. 195 (sem 3) mmHg; P < 0·001). Milk also had an antihypertensive effect. Active milk improved mesenteric artery endothelial dysfunction by NO-dependent and endothelium-derived hyperpolarising factor-dependent mechanisms. Treatment with active milk caused mild changes in aortic gene expression; twenty-seven genes were up-regulated and eighty-two down-regulated. Using the criteria for fold change (fc) < 0·833 or > 1·2 and P < 0·05, the most affected (down-regulated) signalling pathways were hedgehog, chemokine and leucocyte transendothelial migration pathways. ACE expression was also slightly decreased (fc 0·86; P = 0·047). In conclusion, long-term treatment with fermented milk enriched with tripeptides and plant sterols decreases SBP, improves endothelial dysfunction and affects signalling pathways related to inflammatory responses in SHR.
Collapse
|
10
|
Chen Q, Swist E, Beckstead J, Green J, Matias F, Roberts J, Qiao C, Raju J, Brooks SPJ, Scoggan KA. Dietary fructooligosaccharides and wheat bran elicit specific and dose-dependent gene expression profiles in the proximal colon epithelia of healthy Fischer 344 rats. J Nutr 2011; 141:790-7. [PMID: 21430247 DOI: 10.3945/jn.110.133421] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Proximal colon epithelial gene responses to diets containing increasing levels of dietary fermentable material (FM) from 2 different sources were measured to determine whether gene expression patterns were independent of the source of FM. Male Fischer 344 rats (10/group) were fed for 6 wk a control diet containing 10% (g/g) cellulose (0% FM); or a 2, 5, or 10% wheat bran (WB) diet (1, 2, 5% FM); or a 2, 5, or 8% fructooligosaccharides (FOS) diet (2, 5, 8% FM). WB and FOS were substituted for cellulose to give a final 10% nondigestible material content including FM. Gene responses were relative to expression in rats fed the control diet. The gene response patterns associated with feeding ∼2% FM (5% WB and 2% FOS) were similar (∼10 gene changes ≥ 1.6-fold; P ≤ 0.01) and involved genes associated with transport (Scnn1g, Mt1a), transcription (Zbtb16, Egr1), immunity (Fkbp5), a gut hormone (Retn1β), and lipid metabolism (Scd2, Insig1). These changes were also similar to those associated with 5% FM but only in rats fed the 10% WB diet. In contrast, the 5% FOS diet (~5% FM) was associated with 68 gene expression changes ≥ 1.6-fold (P ≤ 0.01). The diet with the highest level of fermentation (8% FOS, ~8% FM) was associated with 132 changes ≥ 1.6-fold (P ≤ 0.01), including genes associated with transport, cellular proliferation, oncogene and tumor metastasis, the cell cycle, apoptosis, signal transduction, transcript regulation, immunity, gut hormones, and lipid metabolic processes. These results show that both the amount and source of FM determine proximal colon epithelial gene response patterns in rats.
Collapse
Affiliation(s)
- Qixuan Chen
- Nutrition Research Division, Health Products and Food Branch, Health Canada, Banting Research Centre, Ottawa, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Chen Q, Gruber H, Swist E, Coville K, Pakenham C, Ratnayake WM, Scoggan KA. Dietary phytosterols and phytostanols decrease cholesterol levels but increase blood pressure in WKY inbred rats in the absence of salt-loading. Nutr Metab (Lond) 2010; 7:11. [PMID: 20637058 PMCID: PMC2843689 DOI: 10.1186/1743-7075-7-11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Accepted: 02/12/2010] [Indexed: 12/04/2022] Open
Abstract
Background There are safety concerns regarding widespread consumption of phytosterol and phytostanol supplemented food products. The aim of this study was to determine, in the absence of excess dietary salt, the individual effects of excess accumulation of dietary phytosterols and phytostanols on blood pressure in Wistar Kyoto (WKY) inbred rats that have a mutation in the Abcg5 gene and thus over absorb phytosterols and phytostanols. Methods Thirty 35-day old male WKY inbred rats (10/group) were fed a control diet or a diet containing phytosterols or phytostanols (2.0 g/kg diet) for 5 weeks. The sterol composition of the diets, plasma and tissues were analysed by gas chromatography. Blood pressure was measured by the tail cuff method. mRNA levels of several renal blood pressure regulatory genes were measured by real-time quantitative PCR. Results Compared to the control diet, the phytosterol diet resulted in 3- to 4-fold increases in the levels of phytosterols in plasma, red blood cells, liver, aorta and kidney of WKY inbred rats (P < 0.05). The phytostanol diet dramatically increased (> 9-fold) the levels of phytostanols in plasma, red blood cells, liver, aorta and kidney of these rats (P < 0.05). The phytosterol diet decreased cholesterol levels by 40%, 31%, and 19% in liver, aorta and kidney, respectively (P < 0.05). The phytostanol diet decreased cholesterol levels by 15%, 16%, 20% and 14% in plasma, liver, aorta and kidney, respectively (P < 0.05). The phytostanol diet also decreased phytosterol levels by 29% to 54% in plasma and tissues (P < 0.05). Both the phytosterol and phytostanol diets produced significant decreases in the ratios of cholesterol to phytosterols and phytostanols in plasma, red blood cells, liver, aorta and kidney. Rats that consumed the phytosterol or phytostanol diets displayed significant increases in systolic and diastolic blood pressure compared to rats that consumed the control diet (P < 0.05). The phytosterol diet increased renal angiotensinogen mRNA levels of these rats. Conclusion These data suggest that excessive accumulation of dietary phytosterols and phytostanols in plasma and tissues may contribute to the increased blood pressure in WKY inbred rats in the absence of excess dietary salt. Therefore, even though phytosterols and phytostanols lower cholesterol levels, prospective clinical studies testing the net beneficial effects of dietary phytosterols and phytostanols on cardiovascular events for subgroups of individuals that have an increased incorporation of these substances are needed.
Collapse
Affiliation(s)
- Qixuan Chen
- Nutrition Research Division, Food Directorate, Health Products and Food Branch, Health Canada, Banting Research Centre, Ottawa, Ontario K1A 0K9, Canada.
| | | | | | | | | | | | | |
Collapse
|
12
|
Jäkälä P, Hakala A, Turpeinen AM, Korpela R, Vapaatalo H. Casein-derived bioactive tripeptides Ile-Pro-Pro and Val-Pro-Pro attenuate the development of hypertension and improve endothelial function in salt-loaded Goto–Kakizaki rats. J Funct Foods 2009. [DOI: 10.1016/j.jff.2009.09.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|