1
|
Effect of Maternal Dietary Redox Levels on Antioxidative Status and Immunity of the Suckling Off-Spring. Antioxidants (Basel) 2021; 10:antiox10030478. [PMID: 33803000 PMCID: PMC8002634 DOI: 10.3390/antiox10030478] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 11/25/2022] Open
Abstract
This study investigates two levels of dietary selenium (Se) and vitamin E in combination on their status in sows and their progeny, and influence on antioxidant status and immunological responses of the piglets at weaning. Female pigs (n = 6) were provided LOW or HIGH antioxidant nutrition (Se and vitamin E) from mating until weaning of their off-spring. The HIGH treatment elevated the concentration of Se (p = 0.015) and α-tocopherol (p = 0.023) in plasma of piglets compared with piglets of the LOW treatment. Treatments also affected the concentrations of milk and sow plasma immunoglobulins. Piglets from sows on the HIGH treatment had increased (p < 0.001) activity of glutathione peroxidase, lower serum levels of C-reactive protein (p = 0.005), haptoglobin (p = 0.05) and albumin (p = 0.05), and the number of white blood cells (p = 0.023) and the ratio of NEU to LYM was lower (p = 0.025) than in piglets from sows on the LOW group. Furthermore, the dietary antioxidant level influenced responses of cytokines (interleukine (IL) 6 (p = 0.007), 12 (p = 0.01) and 18 (p = 0.01)) in piglets’ plasma. In conclusion, improved antioxidant status via dietary maternal provision improves the robustness of the offspring via immunomodulatory mechanisms.
Collapse
|
2
|
Mowry FE, Biancardi VC. Neuroinflammation in hypertension: the renin-angiotensin system versus pro-resolution pathways. Pharmacol Res 2019; 144:279-291. [PMID: 31039397 DOI: 10.1016/j.phrs.2019.04.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 12/31/2022]
Abstract
Overstimulation of the pro-inflammatory pathways within brain areas responsible for sympathetic outflow is well evidenced as a primary contributing factor to the establishment and maintenance of neurogenic hypertension. However, the precise mechanisms and stimuli responsible for promoting a pro-inflammatory state are not fully elucidated. Recent work has unveiled novel compounds derived from omega-3 polyunsaturated fatty acids (ω-3 PUFAs), termed specialized pro-resolving mediators (SPMs), which actively regulate the resolution of inflammation. Failure or dysregulation of the resolution process has been linked to a variety of chronic inflammatory and neurodegenerative diseases. Given the pathologic role of neuroinflammation in the hypertensive state, SPMs and their associated pathways may provide a link between hypertension and the long-standing association of dietary ω-3 PUFAs with cardioprotection. Herein, we review recent progress in understanding the RAS-driven pathophysiology of neurogenic hypertension, particularly in regards to the chronic low-grade neuroinflammatory response. In addition, we examine the potential for an impaired resolution of inflammation process in the context of hypertension.
Collapse
Affiliation(s)
- Francesca Elisabeth Mowry
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Alabama, USA
| | - Vinicia Campana Biancardi
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Alabama, USA; Center for Neurosciences Research Initiative, Auburn University, Alabama, USA.
| |
Collapse
|
3
|
Shen T, Xing G, Zhu J, Zhang S, Cai Y, Li D, Xu G, Xing E, Rao J, Shi R. Effects of 12-week supplementation of marine Omega-3 PUFA-based formulation Omega3Q10 in older adults with prehypertension and/or elevated blood cholesterol. Lipids Health Dis 2017; 16:253. [PMID: 29282085 PMCID: PMC5745982 DOI: 10.1186/s12944-017-0617-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/19/2017] [Indexed: 02/05/2023] Open
Abstract
Backgrounds To study the effects of supplementation of a marine omega-3 poly-unsaturated fatty acids (n3-PUFA) formulation (Omega3Q10) in older adults with hypertension and/or hypercholesterolemia. Methods A total of 97 people were enrolled to receive 12-week supplementation of either Omega3Q10 (n = 48) or soybean oil (n = 49). Total cholesterol (TC), low density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C), and hypertension-related symptoms were determined before and after the supplementation. Results There were no baseline differences between the two groups. Omega3Q10 supplementation significantly reduced diastolic blood pressure (DBP) (from 81.6 ± 5.3 mmHg to 79.3 ± 5.2 mmHg, P < 0.05). Blood concentrations of TC and LDL-C decreased significantly and blood HDL-C level increased significantly after 12 weeks of Omega3Q10 (5.5 ± 0.7 vs. 5.3 ± 0.5, P < 0.05; 3.7 ± 0.8 vs. 3.3 ± 0.6, P < 0.05; 1.2 ± 0.6 vs. 1.3 ± 0.5, P < 0.05, respectively) and soybean oil supplementation (5.7 ± 0.8 vs. 5.6 ± 0.7, P < 0.05; 3.6 ± 0.7 vs. 3.4 ± 0.8, P < 0.05; 1.0 ± 0.8 vs. 1.2 ± 0.7, P < 0.05, respectively) but no group differences were found. A significantly greater proportion of the people in the Omega3Q10 group became free from headache and palpitations & chest tightness symptoms after the 12-week supplementation compared to that of the soybean oil group (95.5% vs. 71.4%, P < 0.01; 95.8 vs. 75.5%, P < 0.01, respectively). Conclusion 12-week supplementation of Fish oil-based PUFA appear to be more effective in improving DBP and hypertension-related symptoms than soybean oil in old adults with hypertension and hypercholesterolemia although both supplementation improved TC, LDL-C and HDL-C concentrations.
Collapse
Affiliation(s)
- Tian Shen
- Department of Community Health and Behavior Medicine, School of Public Health, Shanghai Jiao Tong University, Shanghai, 200025, People's Republic of China
| | - Guoqiang Xing
- Imaging Institute of Rehabilitation and Development of Brain Function, the Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, 637000, People's Republic of China. .,Lotus Biotech.com LLC, John Hopkins University-MCC, 9601 Medical Center Drive, Rockville, MD, 20850, USA.
| | - Jingfen Zhu
- Department of Community Health and Behavior Medicine, School of Public Health, Shanghai Jiao Tong University, Shanghai, 200025, People's Republic of China
| | - Shuxian Zhang
- Department of Community Health and Behavior Medicine, School of Public Health, Shanghai Jiao Tong University, Shanghai, 200025, People's Republic of China
| | - Yong Cai
- Department of Community Health and Behavior Medicine, School of Public Health, Shanghai Jiao Tong University, Shanghai, 200025, People's Republic of China. .,Department of Community Health and Family Medicine, Shanghai Jiao Tong University School of Public Health, Shanghai, 200025, People's Republic of China.
| | - Donghua Li
- Tang Qiao Community Health Service Center, Pudong New District, Shanghai, 200127, People's Republic of China
| | - Gang Xu
- Department of Community Health and Behavior Medicine, School of Public Health, Shanghai Jiao Tong University, Shanghai, 200025, People's Republic of China
| | - Evan Xing
- Biochemistry Program, University of Maryland, Baltimore, MD, 21201, USA
| | - Jianyu Rao
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Rong Shi
- School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| |
Collapse
|
4
|
Myles IA, Pincus NB, Fontecilla NM, Datta SK. Effects of parental omega-3 fatty acid intake on offspring microbiome and immunity. PLoS One 2014; 9:e87181. [PMID: 24489864 PMCID: PMC3906117 DOI: 10.1371/journal.pone.0087181] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 12/20/2013] [Indexed: 02/07/2023] Open
Abstract
The "Western diet" is characterized by increased intake of saturated and omega-6 (n-6) fatty acids with a relative reduction in omega-3 (n-3) consumption. These fatty acids can directly and indirectly modulate the gut microbiome, resulting in altered host immunity. Omega-3 fatty acids can also directly modulate immunity through alterations in the phospholipid membranes of immune cells, inhibition of n-6 induced inflammation, down-regulation of inflammatory transcription factors, and by serving as pre-cursors to anti-inflammatory lipid mediators such as resolvins and protectins. We have previously shown that consumption by breeder mice of diets high in saturated and n-6 fatty acids have inflammatory and immune-modulating effects on offspring that are at least partially driven by vertical transmission of altered gut microbiota. To determine if parental diets high in n-3 fatty acids could also affect offspring microbiome and immunity, we fed breeding mice an n-3-rich diet with 40% calories from fat and measured immune outcomes in their offspring. We found offspring from mice fed diets high in n-3 had altered gut microbiomes and modestly enhanced anti-inflammatory IL-10 from both colonic and splenic tissue. Omega-3 pups were protected during peanut oral allergy challenge with small but measurable alterations in peanut-related serologies. However, n-3 pups displayed a tendency toward worsened responses during E. coli sepsis and had significantly worse outcomes during Staphylococcus aureus skin infection. Our results indicate excess parental n-3 fatty acid intake alters microbiome and immune response in offspring.
Collapse
Affiliation(s)
- Ian A. Myles
- Bacterial Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| | - Nathan B. Pincus
- Bacterial Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Natalia M. Fontecilla
- Bacterial Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sandip K. Datta
- Bacterial Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
5
|
Individual variation in lipidomic profiles of healthy subjects in response to omega-3 Fatty acids. PLoS One 2013; 8:e76575. [PMID: 24204640 PMCID: PMC3811983 DOI: 10.1371/journal.pone.0076575] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 08/27/2013] [Indexed: 01/07/2023] Open
Abstract
INTRODUCTION Conflicting findings in both interventional and observational studies have resulted in a lack of consensus on the benefits of ω3 fatty acids in reducing disease risk. This may be due to individual variability in response. We used a multi-platform lipidomic approach to investigate both the consistent and inconsistent responses of individuals comprehensively to a defined ω3 intervention. METHODS The lipidomic profile including fatty acids, lipid classes, lipoprotein distribution, and oxylipins was examined multi- and uni-variately in 12 healthy subjects pre vs. post six weeks of ω3 fatty acids (1.9 g/d eicosapentaenoic acid [EPA] and 1.5 g/d docosahexaenoic acid [DHA]). RESULTS Total lipidomic and oxylipin profiles were significantly different pre vs. post treatment across all subjects (p=0.00007 and p=0.00002 respectively). There was a strong correlation between oxylipin profiles and EPA and DHA incorporated into different lipid classes (r(2)=0.93). However, strikingly divergent responses among individuals were also observed. Both ω3 and ω6 fatty acid metabolites displayed a large degree of variation among the subjects. For example, in half of the subjects, two arachidonic acid cyclooxygenase products, prostaglandin E2 (PGE2) and thromboxane B2 (TXB2), and a lipoxygenase product, 12-hydroxyeicosatetraenoic acid (12-HETE) significantly decreased post intervention, whereas in the other half they either did not change or increased. The EPA lipoxygenase metabolite 12-hydroxyeicosapentaenoic acid (12-HEPE) varied among subjects from an 82% decrease to a 5,000% increase. CONCLUSIONS Our results show that certain defined responses to ω3 fatty acid intervention were consistent across all subjects. However, there was also a high degree of inter-individual variability in certain aspects of lipid metabolism. This lipidomic based phenotyping approach demonstrated that individual responsiveness to ω3 fatty acids is highly variable and measurable, and could be used as a means to assess the effectiveness of ω3 interventions in modifying disease risk and determining metabolic phenotype.
Collapse
|
6
|
Harrison LM, Balan KV, Babu US. Dietary fatty acids and immune response to food-borne bacterial infections. Nutrients 2013; 5:1801-22. [PMID: 23698167 PMCID: PMC3708349 DOI: 10.3390/nu5051801] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 04/22/2013] [Accepted: 04/27/2013] [Indexed: 01/18/2023] Open
Abstract
Functional innate and acquired immune responses are required to protect the host from pathogenic bacterial infections. Modulation of host immune functions may have beneficial or deleterious effects on disease outcome. Different types of dietary fatty acids have been shown to have variable effects on bacterial clearance and disease outcome through suppression or activation of immune responses. Therefore, we have chosen to review research across experimental models and food sources on the effects of commonly consumed fatty acids on the most common food-borne pathogens, including Salmonella sp., Campylobacter sp., Shiga toxin-producing Escherichia coli, Shigella sp., Listeria monocytogenes, and Staphylococcus aureus. Altogether, the compilation of literature suggests that no single fatty acid is an answer for protection from all food-borne pathogens, and further research is necessary to determine the best approach to improve disease outcomes.
Collapse
Affiliation(s)
- Lisa M Harrison
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD 20708, USA.
| | | | | |
Collapse
|