1
|
Lautt WW. Hepatalin: the missing link in prediabetes, obesity, and type 2 diabetes. Can J Physiol Pharmacol 2023; 101:117-135. [PMID: 36716439 DOI: 10.1139/cjpp-2022-0332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hepatalin is a hormone secreted by the liver in response to pulses of insulin after a mixed nutrient meal, but only if the liver receives two permissive synergistic feeding signals from the stomach. Hepatalin stimulates glucose uptake and storage as glycogen in skeletal muscle, heart, and kidney but not liver, intestines, or adipocytes. Insulin acts primarily on liver and fat. Reduced hepatalin action results in postprandial hyperglycemia, compensatory elevation of insulin secretion, and a resultant shift in partitioning of nutrient energy storage from glycogen in muscle, to fat. Chronic hepatalin suppression leads to a predictable chronology of dysfunctions, first diagnosable as Absence of Meal-induced Insulin Sensitization (AMIS) which progresses to prediabetes, adiposity, and type 2 diabetes. The focus on nutrient partitioning and the role of hepatalin allows AMIS to be diagnosed, prevented, and treated, including through the use of lifestyle interventions.
Collapse
Affiliation(s)
- W Wayne Lautt
- Department of Pharmacology and Therapeutics, Max Rady Faculty of Health Sciences, University of Manitoba, 260 Brodie Center 727 McDermot Avenue, Winnipeg, MB R3E 3P5, Canada
| |
Collapse
|
2
|
Nikroo H, Hosseini SRA, Fathi M, Sardar MA, Khazaei M. The effect of aerobic, resistance, and combined training on PPAR-α, SIRT1 gene expression, and insulin resistance in high-fat diet-induced NAFLD male rats. Physiol Behav 2020; 227:113149. [DOI: 10.1016/j.physbeh.2020.113149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/20/2020] [Accepted: 08/20/2020] [Indexed: 02/07/2023]
|
3
|
De Sousa RAL. Gestational diabetes is associated to the development of brain insulin resistance in the offspring. Int J Diabetes Dev Ctries 2018. [DOI: 10.1007/s13410-018-0618-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
4
|
Lautt WW, Ming Z, Legare DJ, Chowdhury KK, Hatch GM, Wang HH. Fatty Liver and Fatty Heart—Where do They Stand in the AMIS Syndrome? Healthcare (Basel) 2015; 3:666-82. [PMID: 27417789 PMCID: PMC4939563 DOI: 10.3390/healthcare3030666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 07/14/2015] [Accepted: 07/31/2015] [Indexed: 11/16/2022] Open
Abstract
Meal-induced insulin sensitization (MIS) refers to the augmented glucose uptake response to insulin following a meal. Absence of MIS (AMIS) causes significant decrease in post-meal glucose disposal leading to postprandial hyperglycemia, hyperinsulinemia, hyperlipidemia, adiposity, increased free radical stress, and a cluster of progressive metabolic, vascular, and cardiac dysfunctions referred to as the AMIS syndrome. We tested the hypothesis that fat accumulation in the liver and heart is part of the AMIS syndrome. Questions examined in the study: (1) Is prediabetic fat accumulation in the heart and liver a component of the AMIS syndrome? (2) Is fatty liver a cause or consequence of peripheral insulin resistance? (3) Is early cardiac dysfunction in the AMIS syndrome attributable to fat accumulation in the heart? and (4) Can the synergistic antioxidant cocktail SAMEC (S-adenosylmethionine, vitamin E, and vitamin C), known to benefit MIS, affect cardiac and hepatic triglyceride levels? Four animal models of AMIS were used in aged male Sprague-Dawley rats (52 weeks ± sucrose ± SAMEC), compared with young controls (nine weeks). Fat accumulation in the heart was not significant and therefore cannot account for the early cardiac dysfunction. Hepatic triglycerides increased only in the most severe AMIS model but the small changes correlated with the much more rapidly developing peripheral adiposity. Systemic adiposity represents an early stage, whereas accumulation of cardiac and hepatic triglycerides represents a late stage of the prediabetic AMIS syndrome. Fat accumulation in the liver is a consequence, not a cause, of AMIS. SAMEC protected against the sucrose effects on whole body adiposity and hepatic lipid accumulation.
Collapse
Affiliation(s)
- W Wayne Lautt
- Department of Pharmacology and Therapeutics, College of Medicine, Faculty of Health Sciences, University of Manitoba, A224-753 McDermot Avenue, Winnipeg, MB R3E 0T6, Canada.
| | - Zhi Ming
- Department of Pharmacology and Therapeutics, College of Medicine, Faculty of Health Sciences, University of Manitoba, A224-753 McDermot Avenue, Winnipeg, MB R3E 0T6, Canada.
| | - Dallas J Legare
- Department of Pharmacology and Therapeutics, College of Medicine, Faculty of Health Sciences, University of Manitoba, A224-753 McDermot Avenue, Winnipeg, MB R3E 0T6, Canada.
| | - Kawshik K Chowdhury
- Department of Pharmacology and Therapeutics, College of Medicine, Faculty of Health Sciences, University of Manitoba, A224-753 McDermot Avenue, Winnipeg, MB R3E 0T6, Canada.
| | - Grant M Hatch
- Department of Pharmacology and Therapeutics, College of Medicine, Faculty of Health Sciences, University of Manitoba, A224-753 McDermot Avenue, Winnipeg, MB R3E 0T6, Canada.
| | - Hui Helen Wang
- Department of Pharmacology and Therapeutics, College of Medicine, Faculty of Health Sciences, University of Manitoba, A224-753 McDermot Avenue, Winnipeg, MB R3E 0T6, Canada.
| |
Collapse
|
5
|
Cambios en la homeostasis de la glucosa y la proliferación de la célula beta pancreática tras el cambio a ciclosporina en la diabetes inducida por tacrolimus. Nefrologia 2015; 35:264-72. [DOI: 10.1016/j.nefro.2015.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 02/18/2015] [Indexed: 01/03/2023] Open
|
6
|
Sarvas JL, Otis JS, Khaper N, Lees SJ. Voluntary physical activity prevents insulin resistance in a tissue specific manner. Physiol Rep 2015; 3:3/2/e12277. [PMID: 25713323 PMCID: PMC4393189 DOI: 10.14814/phy2.12277] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Physical inactivity and a sedentary lifestyle are risk factors for the development of type 2 diabetes. Here, we identified the effects 8 weeks of voluntary physical activity had on the prevention of insulin resistance in mouse skeletal muscles and liver (a hallmark of T2D). To do this, 8 week old C57BL/6J mice with (RUN) and without (SED) voluntary access to running wheels were fed a standard rodent chow ad libitum for 8 weeks. In the liver, there was a 2.5-fold increase in insulin stimulated AktSER473 phosphorylation, and a threefold increase in insulin-stimulated (0.5 U/kg) GSK3βSER9 phosphorylation in RUN compared to SED mice. Although not induced in skeletal muscles, there was a twofold increase in SOCS3 expression in SED compared to RUN mice in the liver. There was no difference in the glucose tolerance test between groups. This study was the first to show differences in liver insulin sensitivity after 8 weeks of voluntary physical activity, and increased SOCS3 expression in the liver of sedentary mice compared to active mice. These findings demonstrate that even in young mice that would normally be considered healthy, the lack of physical activity leads to insulin resistance representing the initial pathogenesis of impaired glucose metabolism leading to type 2 diabetes.
Collapse
Affiliation(s)
- Jessica L Sarvas
- Medical Sciences Division, Northern Ontario School of Medicine, Thunder Bay, Ontario, Canada Department of Biology, Lakehead University, Thunder Bay, Ontario, Canada
| | - Jeffrey S Otis
- Department of Kinesiology and Health, Georgia State University, Atlanta, Georgia, Canada
| | - Neelam Khaper
- Medical Sciences Division, Northern Ontario School of Medicine, Thunder Bay, Ontario, Canada Department of Biology, Lakehead University, Thunder Bay, Ontario, Canada
| | - Simon J Lees
- Medical Sciences Division, Northern Ontario School of Medicine, Thunder Bay, Ontario, Canada Department of Biology, Lakehead University, Thunder Bay, Ontario, Canada Health and Exercise Science, Colorado State University, Fort Collins, Colorado, Canada
| |
Collapse
|
7
|
Wang HH, Chowdhury KK, Lautt WW. A synergistic, balanced antioxidant cocktail, protects aging rats from insulin resistance and absence of meal-induced insulin sensitization (AMIS) syndrome. Molecules 2015; 20:669-82. [PMID: 25569521 PMCID: PMC6272698 DOI: 10.3390/molecules20010669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 12/26/2014] [Indexed: 11/16/2022] Open
Abstract
A series of in vivo and in vitro studies using animal and human models in the past 15 years have demonstrated that approximately 55% (~66% in humans) of the glucose disposal effect of an i.v. injection of insulin in the fed state is dependent on the action of a second hormone, hepatic insulin sensitizing substance (HISS), which is released from the liver and stimulates glucose uptake in muscle, heart and kidneys. Sensitization of the insulin response by a meal through release of HISS is called meal-induced insulin sensitization (MIS). Absence of HISS action results in postprandial hyperglycemia, hyperinsulinemia, hyperlipidemia, adiposity, increased free radical stress and a cluster of progressive metabolic and cardiovascular dysfunctions referred to as the AMIS (absence of meal-induced insulin sensitization) syndrome. Reduced HISS release accounts for the insulin resistance that occurs with aging and is made worse by physical inactivity and diets high in sucrose or fat. This brief review provides an update of major metabolic disturbances associated with aging due to reduction of HISS release, and the protection against these pathological changes in aging animals using a balanced synergistic antioxidant cocktail SAMEC (S-adenosylmethionine, vitamins E and C). The synergy amongst the components is consistent with the known benefits of antioxidants supplied by a mixed diet and acting through diverse mechanisms. Using only three constituents, SAMEC appears suitable as an antioxidant specifically targeting the AMIS syndrome.
Collapse
Affiliation(s)
- Hui Helen Wang
- Department of Pharmacology & Therapeutics, College of Medicine, Faculty of Health Sciences, University of Manitoba, A224-753 McDermot Avenue, Winnipeg, MB R3E 0T6, Canada.
| | - Kawshik K Chowdhury
- Department of Pharmacology & Therapeutics, College of Medicine, Faculty of Health Sciences, University of Manitoba, A224-753 McDermot Avenue, Winnipeg, MB R3E 0T6, Canada.
| | - W Wayne Lautt
- Department of Pharmacology & Therapeutics, College of Medicine, Faculty of Health Sciences, University of Manitoba, A224-753 McDermot Avenue, Winnipeg, MB R3E 0T6, Canada.
| |
Collapse
|
8
|
Effects of physical activity upon the liver. Eur J Appl Physiol 2014; 115:1-46. [DOI: 10.1007/s00421-014-3031-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 10/14/2014] [Indexed: 02/07/2023]
|
9
|
Chowdhury KK, Legare DJ, Lautt WW. Interaction of antioxidants and exercise on insulin sensitivity in healthy and prediabetic rats. Can J Physiol Pharmacol 2013; 91:570-7. [PMID: 23826718 DOI: 10.1139/cjpp-2012-0425] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Meal-induced insulin sensitization (MIS) describes the augmented postprandial response to insulin through action of the hepatic insulin sensitizing substance (HISS). HISS-action is impaired in insulin resistance associated with aging and type 2 diabetes, but could be preserved by the antioxidant cocktail SAMEC, along with voluntary exercise. In this study, we tested whether antioxidant supplementation during voluntary training would interact with the effects of exercise on HISS-mediated glucose uptake in healthy and prediabetic rats. The 7-day voluntary running-wheel training was used as an exercise intervention. SAMEC supplementation was provided only during the 7-day training session. The rapid insulin sensitivity test (RIST) was conducted to determine insulin- and HISS-dependent glucose uptake in 14-week-old healthy rats, and sucrose-induced insulin-resistant rats, with or without exercise in the presence or absence of SAMEC supplementation. The postprandial insulin sensitivity was increased by exercise, primarily through enhancement of the HISS-dependent glucose uptake, which remained unaffected by SAMEC. SAMEC supplementation did not either harm or add benefit to the positive effects of exercise on insulin sensitivity in healthy or prediabetic rats. While SAMEC alone was a demonstrated preventive against the progressive loss of HISS action in previous studies, short-term supplementation in this study did not reverse the established disease state.
Collapse
Affiliation(s)
- Kawshik K Chowdhury
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Manitoba, A210 - 753 McDermot Avenue, Winnipeg, MB R3E 0T6, Canada.
| | | | | |
Collapse
|
10
|
Rodriguez-Rodriguez AE, Triñanes J, Velazquez-Garcia S, Porrini E, Vega Prieto MJ, Diez Fuentes ML, Arevalo M, Salido Ruiz E, Torres A. The higher diabetogenic risk of tacrolimus depends on pre-existing insulin resistance. A study in obese and lean Zucker rats. Am J Transplant 2013; 13:1665-75. [PMID: 23651473 DOI: 10.1111/ajt.12236] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 02/22/2013] [Accepted: 02/28/2013] [Indexed: 01/25/2023]
Abstract
Insulin resistance may interact with calcineurin inhibitors, enhancing the diabetogenic effect of tacrolimus compared with cyclosporine-A. We studied both drugs in insulin-resistant animals: obese Zucker rats (n = 45), and insulin-sensitive animals: lean Zucker rats (n = 21). During 11 days, animals received saline-buffer, cyclosporine-A (2.5 mg/kg/day) or tacrolimus (0.3 mg/kg/day). At Days 0 and 12 animals underwent intraperitoneal glucose tolerance test (0-30-60-120 min). Islet morphometry, beta-cell proliferation, apoptosis and Ins2 gene expression were analyzed. By Day 12, no lean animal had developed diabetes, while all obese animals on tacrolimus and 40% on cyclosporine-A had. In obese animals, tacrolimus reduced beta-cell proliferation and Ins2 gene expression compared with cyclosporine-A. Five days after treatment discontinuation, partial recovery was observed, with only 10% and 60% of the animals on cyclosporine and tacrolimus remaining diabetic respectively. Beta-cell proliferation increased in animals on tacrolimus while Ins2 gene expression remained unaltered. In conclusion, insulin resistance exacerbated the diabetogenic effect of tacrolimus compared with cyclosporine-A. This may be explained by greater inhibition of Ins2 gene and beta-cell proliferation by tacrolimus in the insulin resistant state. Discontinuation of the drugs may allow the recovery of the metabolic alterations.
Collapse
|