1
|
Aragón-Vargas LF, Garzón-Mosquera JC, Montoya-Arroyo JA. Skimmed, Lactose-Free Milk Ingestion Postexercise: Rehydration Effectiveness and Gastrointestinal Disturbances Versus Water and a Sports Drink in Physically Active People. Int J Sport Nutr Exerc Metab 2024; 34:258-266. [PMID: 38789098 DOI: 10.1123/ijsnem.2023-0253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/15/2024] [Accepted: 03/17/2024] [Indexed: 05/26/2024]
Abstract
Postexercise hydration is fundamental to replace fluid loss from sweat. This study evaluated rehydration and gastrointestinal (GI) symptoms for each of three beverages: water (W), sports drink (SD), and skimmed, lactose-free milk (SLM) after moderate-intensity cycling in the heat. Sixteen college students completed three exercise sessions each to lose ≈2% of their body mass. They drank 150% of body mass loss of the drink assigned in randomized order; net fluid balance, diuresis, and GI symptoms were measured and followed up for 3 hr after completion of fluid intake. SLM showed higher fluid retention (∼69%) versus W (∼40%; p < .001); SD (∼56%) was not different from SLM or W (p > .05). Net fluid balance was higher for SLM (-0.26 kg) and SD (-0.42 kg) than W (-0.67 kg) after 3 hr (p < .001), resulting from a significantly lower diuresis with SLM. Reported GI disturbances were mild and showed no difference among drinks (p > .05) despite ingestion of W (1,992 ± 425 ml), SD (1,999 ± 429 ml), and SLM (1,993 ± 426 ml) in 90 min. In conclusion, SLM was more effective than W for postexercise rehydration, showing greater fluid retention for the 3-hr follow-up and presenting with low-intensity GI symptoms similar to those with W and SD. These results confirm that SLM is an effective option for hydration after exercise in the heat.
Collapse
Affiliation(s)
- Luis F Aragón-Vargas
- Human Movement Science Research Center (CIMOHU-UCR), University of Costa Rica (UCR), San Jose, Costa Rica
| | - Julián C Garzón-Mosquera
- Human Movement Science Research Center (CIMOHU-UCR), University of Costa Rica (UCR), San Jose, Costa Rica
| | - Johnny A Montoya-Arroyo
- Human Movement Science Research Center (CIMOHU-UCR), University of Costa Rica (UCR), San Jose, Costa Rica
| |
Collapse
|
2
|
Pérez-Castillo ÍM, Williams JA, López-Chicharro J, Mihic N, Rueda R, Bouzamondo H, Horswill CA. Compositional Aspects of Beverages Designed to Promote Hydration Before, During, and After Exercise: Concepts Revisited. Nutrients 2023; 16:17. [PMID: 38201848 PMCID: PMC10781183 DOI: 10.3390/nu16010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Hypohydration can impair aerobic performance and deteriorate cognitive function during exercise. To minimize hypohydration, athletes are recommended to commence exercise at least euhydrated, ingest fluids containing sodium during long-duration and/or high-intensity exercise to prevent body mass loss over 2% and maintain elevated plasma osmolality, and rapidly restore and retain fluid and electrolyte homeostasis before a second exercise session. To achieve these goals, the compositions of the fluids consumed are key; however, it remains unclear what can be considered an optimal formulation for a hydration beverage in different settings. While carbohydrate-electrolyte solutions such as sports drinks have been extensively explored as a source of carbohydrates to meet fuel demands during intense and long-duration exercise, these formulas might not be ideal in situations where fluid and electrolyte balance is impaired, such as practicing exercise in the heat. Alternately, hypotonic compositions consisting of moderate to high levels of electrolytes (i.e., ≥45 mmol/L), mainly sodium, combined with low amounts of carbohydrates (i.e., <6%) might be useful to accelerate intestinal water absorption, maintain plasma volume and osmolality during exercise, and improve fluid retention during recovery. Future studies should compare hypotonic formulas and sports drinks in different exercise settings, evaluating different levels of sodium and/or other electrolytes, blends of carbohydrates, and novel ingredients for addressing hydration and rehydration before, during, and after exercise.
Collapse
Affiliation(s)
| | | | | | - Niko Mihic
- Real Madrid, Medical Services, 28055 Madrid, Spain; (J.L.-C.); (N.M.)
| | | | | | - Craig A. Horswill
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60608, USA;
| |
Collapse
|
3
|
Takamata A, Oka A, Nagata M, Kosugi N, Eguchi S, Sakagawa N, Takahashi A, Nishimoto Y, Nishimaki M, Morimoto K, Takihara T. Effect of fluid replacement with green tea on body fluid balance and renal responses under mild thermal hypohydration: a randomized crossover study. Eur J Nutr 2023; 62:3339-3347. [PMID: 37594507 DOI: 10.1007/s00394-023-03236-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/08/2023] [Indexed: 08/19/2023]
Abstract
PURPOSE Maintaining an appropriate hydration level by ingesting fluid in a hot environment is a measure to prevent heat-related illness. Caffeine-containing beverages, including green tea (GT), have been avoided as inappropriate rehydration beverages to prevent heat-related illness because caffeine has been assumed to exert diuretic/natriuretic action. However, the influence of caffeine intake on urine output in dehydrated individuals is not well documented. The aim of the present study was to examine the effect of fluid replacement with GT on body fluid balance and renal water and electrolyte handling in mildly dehydrated individuals. METHODS Subjects were dehydrated by performing three bouts of stepping exercise for 20 min separated by 10 min of rest. They were asked to ingest an amount of water (H2O), GT, or caffeinated H2O (20 mg/100 ml; Caf-H2O) that was equal to the volume of fluid loss during the dehydration protocol; fluid balance was measured for 2 h after fluid ingestion. RESULTS The dehydration protocol induced hypohydration by ~ 10 g/kg body weight (~ 1% of body weight). Fluid balance 2 h after fluid ingestion was significantly less negative in all trials, and the fluid retention ratio was 52.2 ± 4.2% with H2O, 51.0 ± 5.0% with GT, and 47.9 ± 6.2% with Caf-H2O; those values did not differ among the trials. After rehydration, urine output, urine osmolality, and urinary excretions of osmotically active substances, sodium, potassium and chloride were not different among the trials. CONCLUSION The data indicate that ingestion of GT or an equivalent caffeine amount does not worsen the hydration level 2 h after ingestion and can be effective in reducing the negative fluid balance for acute recovery from mild hypohydration. TRIAL REGISTRATION ISRCTN53057185; retrospectively registered.
Collapse
Affiliation(s)
- Akira Takamata
- Department of Environmental Health, Nara Women's University, Nara, Japan.
| | - Ayano Oka
- Department of Environmental Health, Nara Women's University, Nara, Japan
| | - Mayuna Nagata
- Department of Environmental Health, Nara Women's University, Nara, Japan
| | - Natsumi Kosugi
- Department of Environmental Health, Nara Women's University, Nara, Japan
| | - Sayaka Eguchi
- Department of Environmental Health, Nara Women's University, Nara, Japan
| | - Nanako Sakagawa
- Department of Environmental Health, Nara Women's University, Nara, Japan
| | - Aoi Takahashi
- Department of Environmental Health, Nara Women's University, Nara, Japan
| | - Yuki Nishimoto
- Department of Environmental Health, Nara Women's University, Nara, Japan
| | - Mio Nishimaki
- Department of Environmental Health, Nara Women's University, Nara, Japan
| | - Keiko Morimoto
- Department of Environmental Health, Nara Women's University, Nara, Japan
- Department of Health and Nutrition, Kyoto Koka Women's University, Kyoto, Japan
| | - Takanobu Takihara
- Central Research Institute, ITO EN, Ltd., Makinohara, Shizuoka, Japan
| |
Collapse
|
4
|
Wyckoff MH, Singletary EM, Soar J, Olasveengen TM, Greif R, Liley HG, Zideman D, Bhanji F, Andersen LW, Avis SR, Aziz K, Bendall JC, Berry DC, Borra V, Böttiger BW, Bradley R, Bray JE, Breckwoldt J, Carlson JN, Cassan P, Castrén M, Chang WT, Charlton NP, Cheng A, Chung SP, Considine J, Costa-Nobre DT, Couper K, Dainty KN, Davis PG, de Almeida MF, de Caen AR, de Paiva EF, Deakin CD, Djärv T, Douma MJ, Drennan IR, Duff JP, Eastwood KJ, El-Naggar W, Epstein JL, Escalante R, Fabres JG, Fawke J, Finn JC, Foglia EE, Folke F, Freeman K, Gilfoyle E, Goolsby CA, Grove A, Guinsburg R, Hatanaka T, Hazinski MF, Heriot GS, Hirsch KG, Holmberg MJ, Hosono S, Hsieh MJ, Hung KKC, Hsu CH, Ikeyama T, Isayama T, Kapadia VS, Kawakami MD, Kim HS, Kloeck DA, Kudenchuk PJ, Lagina AT, Lauridsen KG, Lavonas EJ, Lockey AS, Malta Hansen C, Markenson D, Matsuyama T, McKinlay CJD, Mehrabian A, Merchant RM, Meyran D, Morley PT, Morrison LJ, Nation KJ, Nemeth M, Neumar RW, Nicholson T, Niermeyer S, Nikolaou N, Nishiyama C, O'Neil BJ, Orkin AM, Osemeke O, Parr MJ, Patocka C, Pellegrino JL, Perkins GD, Perlman JM, Rabi Y, Reynolds JC, Ristagno G, Roehr CC, Sakamoto T, Sandroni C, Sawyer T, Schmölzer GM, Schnaubelt S, Semeraro F, Skrifvars MB, Smith CM, Smyth MA, Soll RF, Sugiura T, Taylor-Phillips S, Trevisanuto D, Vaillancourt C, Wang TL, Weiner GM, Welsford M, Wigginton J, Wyllie JP, Yeung J, Nolan JP, Berg KM. 2021 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations: Summary From the Basic Life Support; Advanced Life Support; Neonatal Life Support; Education, Implementation, and Teams; First Aid Task Forces; and the COVID-19 Working Group. Resuscitation 2021; 169:229-311. [PMID: 34933747 PMCID: PMC8581280 DOI: 10.1016/j.resuscitation.2021.10.040] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The International Liaison Committee on Resuscitation initiated a continuous review of new, peer-reviewed published cardiopulmonary resuscitation science. This is the fifth annual summary of the International Liaison Committee on Resuscitation International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations; a more comprehensive review was done in 2020. This latest summary addresses the most recently published resuscitation evidence reviewed by International Liaison Committee on Resuscitation task force science experts. Topics covered by systematic reviews in this summary include resuscitation topics of video-based dispatch systems; head-up cardiopulmonary resuscitation; early coronary angiography after return of spontaneous circulation; cardiopulmonary resuscitation in the prone patient; cord management at birth for preterm and term infants; devices for administering positive-pressure ventilation at birth; family presence during neonatal resuscitation; self-directed, digitally based basic life support education and training in adults and children; coronavirus disease 2019 infection risk to rescuers from patients in cardiac arrest; and first aid topics, including cooling with water for thermal burns, oral rehydration for exertional dehydration, pediatric tourniquet use, and methods of tick removal. Members from 6 International Liaison Committee on Resuscitation task forces have assessed, discussed, and debated the quality of the evidence, according to the Grading of Recommendations Assessment, Development, and Evaluation criteria, and their statements include consensus treatment recommendations or good practice statements. Insights into the deliberations of the task forces are provided in Justification and Evidence-to-Decision Framework Highlights sections. In addition, the task forces listed priority knowledge gaps for further research.
Collapse
|
5
|
Wyckoff MH, Singletary EM, Soar J, Olasveengen TM, Greif R, Liley HG, Zideman D, Bhanji F, Andersen LW, Avis SR, Aziz K, Bendall JC, Berry DC, Borra V, Böttiger BW, Bradley R, Bray JE, Breckwoldt J, Carlson JN, Cassan P, Castrén M, Chang WT, Charlton NP, Cheng A, Chung SP, Considine J, Costa-Nobre DT, Couper K, Dainty KN, Davis PG, de Almeida MF, de Caen AR, de Paiva EF, Deakin CD, Djärv T, Douma MJ, Drennan IR, Duff JP, Eastwood KJ, El-Naggar W, Epstein JL, Escalante R, Fabres JG, Fawke J, Finn JC, Foglia EE, Folke F, Freeman K, Gilfoyle E, Goolsby CA, Grove A, Guinsburg R, Hatanaka T, Hazinski MF, Heriot GS, Hirsch KG, Holmberg MJ, Hosono S, Hsieh MJ, Hung KKC, Hsu CH, Ikeyama T, Isayama T, Kapadia VS, Kawakami MD, Kim HS, Kloeck DA, Kudenchuk PJ, Lagina AT, Lauridsen KG, Lavonas EJ, Lockey AS, Malta Hansen C, Markenson D, Matsuyama T, McKinlay CJD, Mehrabian A, Merchant RM, Meyran D, Morley PT, Morrison LJ, Nation KJ, Nemeth M, Neumar RW, Nicholson T, Niermeyer S, Nikolaou N, Nishiyama C, O'Neil BJ, Orkin AM, Osemeke O, Parr MJ, Patocka C, Pellegrino JL, Perkins GD, Perlman JM, Rabi Y, Reynolds JC, Ristagno G, Roehr CC, Sakamoto T, Sandroni C, Sawyer T, Schmölzer GM, Schnaubelt S, Semeraro F, Skrifvars MB, Smith CM, Smyth MA, Soll RF, Sugiura T, Taylor-Phillips S, Trevisanuto D, Vaillancourt C, Wang TL, Weiner GM, Welsford M, Wigginton J, Wyllie JP, Yeung J, Nolan JP, Berg KM. 2021 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations: Summary From the Basic Life Support; Advanced Life Support; Neonatal Life Support; Education, Implementation, and Teams; First Aid Task Forces; and the COVID-19 Working Group. Circulation 2021; 145:e645-e721. [PMID: 34813356 DOI: 10.1161/cir.0000000000001017] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The International Liaison Committee on Resuscitation initiated a continuous review of new, peer-reviewed published cardiopulmonary resuscitation science. This is the fifth annual summary of the International Liaison Committee on Resuscitation International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations; a more comprehensive review was done in 2020. This latest summary addresses the most recently published resuscitation evidence reviewed by International Liaison Committee on Resuscitation task force science experts. Topics covered by systematic reviews in this summary include resuscitation topics of video-based dispatch systems; head-up cardiopulmonary resuscitation; early coronary angiography after return of spontaneous circulation; cardiopulmonary resuscitation in the prone patient; cord management at birth for preterm and term infants; devices for administering positive-pressure ventilation at birth; family presence during neonatal resuscitation; self-directed, digitally based basic life support education and training in adults and children; coronavirus disease 2019 infection risk to rescuers from patients in cardiac arrest; and first aid topics, including cooling with water for thermal burns, oral rehydration for exertional dehydration, pediatric tourniquet use, and methods of tick removal. Members from 6 International Liaison Committee on Resuscitation task forces have assessed, discussed, and debated the quality of the evidence, according to the Grading of Recommendations Assessment, Development, and Evaluation criteria, and their statements include consensus treatment recommendations or good practice statements. Insights into the deliberations of the task forces are provided in Justification and Evidence-to-Decision Framework Highlights sections. In addition, the task forces listed priority knowledge gaps for further research.
Collapse
|
6
|
Erste Hilfe. Notf Rett Med 2021. [DOI: 10.1007/s10049-021-00886-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Zideman DA, Singletary EM, Borra V, Cassan P, Cimpoesu CD, De Buck E, Djärv T, Handley AJ, Klaassen B, Meyran D, Oliver E, Poole K. European Resuscitation Council Guidelines 2021: First aid. Resuscitation 2021; 161:270-290. [PMID: 33773828 DOI: 10.1016/j.resuscitation.2021.02.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The European Resuscitation Council has produced these first aid guidelines, which are based on the 2020 International Consensus on Cardiopulmonary Resuscitation Science with Treatment Recommendations. The topics include the first aid management of emergency medicine and trauma. For medical emergencies the following content is covered: recovery position, optimal positioning for shock, bronchodilator administration for asthma, recognition of stroke, early aspirin for chest pain, second dose of adrenaline for anaphylaxis, management of hypoglycaemia, oral rehydration solutions for treating exertion-related dehydration, management of heat stroke by cooling, supplemental oxygen in acute stroke, and presyncope. For trauma related emergencies the following topics are covered: control of life-threatening bleeding, management of open chest wounds, cervical spine motion restriction and stabilisation, recognition of concussion, cooling of thermal burns, dental avulsion, compression wrap for closed extremity joint injuries, straightening an angulated fracture, and eye injury from chemical exposure.
Collapse
Affiliation(s)
| | | | - Vere Borra
- Centre for Evidence-based Practice, Belgian Red Cross, Mechelen, Belgium; Cochrane First Aid, Mechelen, Belgium
| | - Pascal Cassan
- International Federation of Red Cross and Red Crescent, France
| | - Carmen D Cimpoesu
- University of Medicine and Pharmacy "Grigore T. Popa", Iasi, Emergency Department and Prehospital EMS SMURD Iasi Emergency County Hospital "Sf. Spiridon" Iasi, Romania
| | - Emmy De Buck
- Centre for Evidence-based Practice, Belgian Red Cross, Mechelen, Belgium; Cochrane First Aid, Mechelen, Belgium; Department of Public Health and Primary Care, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Therese Djärv
- Department of Medicine Solna, Karolinska Institute and Division of Acute and Reparative Medicine, Karolinska University Hospital, Sweden
| | | | - Barry Klaassen
- Emergency Medicine, Ninewells Hospital and Medical School Dundee, UK; British Red Cross, UK
| | - Daniel Meyran
- French Red Cross, Bataillon de Marins Pompiers de Marseille, France
| | | | | |
Collapse
|
8
|
Russo I, Della Gatta PA, Garnham A, Porter J, Burke LM, Costa RJS. Assessing Overall Exercise Recovery Processes Using Carbohydrate and Carbohydrate-Protein Containing Recovery Beverages. Front Physiol 2021; 12:628863. [PMID: 33613323 PMCID: PMC7890126 DOI: 10.3389/fphys.2021.628863] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/12/2021] [Indexed: 12/31/2022] Open
Abstract
We compared the impact of two different, but commonly consumed, beverages on integrative markers of exercise recovery following a 2 h high intensity interval exercise (i.e., running 70-80% V̇O2 max intervals and interspersed with plyometric jumps). Participants (n = 11 males, n = 6 females) consumed a chocolate flavored dairy milk beverage (CM: 1.2 g carbohydrate/kg BM and 0.4 g protein/kg BM) or a carbohydrate-electrolyte beverage (CEB: isovolumetric with 0.76 g carbohydrate/kg BM) after exercise, in a randomized-crossover design. The recovery beverages were provided in three equal boluses over a 30 min period commencing 1 h post-exercise. Muscle biopsies were performed at 0 h and 2 h in recovery. Venous blood samples, nude BM and total body water were collected before and at 0, 2, and 4 h recovery. Gastrointestinal symptoms and breath hydrogen (H2) were collected before exercise and every 30 min during recovery. The following morning, participants returned for performance assessment. In recovery, breath H2 reached clinical relevance of >10 ppm following consumption of both beverages, in adjunct with high incidence of gastrointestinal symptoms (70%), but modest severity. Blood glucose response was greater on CEB vs. CM (P < 0.01). Insulin response was greater on CM compared with CEB (P < 0.01). Escherichia coli lipopolysaccharide stimulated neutrophil function reduced on both beverages (49%). p-GSK-3β/total-GSK-3β was greater on CM compared with CEB (P = 0.037); however, neither beverage achieved net muscle glycogen re-storage. Phosphorylation of mTOR was greater on CM than CEB (P < 0.001). Fluid retention was lower (P = 0.038) on CEB (74.3%) compared with CM (82.1%). Physiological and performance outcomes on the following day did not differ between trials. Interconnected recovery optimization markers appear to respond differently to the nutrient composition of recovery nutrition, albeit subtly and with individual variation. The present findings expand on recovery nutrition strategies to target functionality and patency of the gastrointestinal tract as a prerequisite to assimilation of recovery nutrition, as well as restoration of immunocompetency.
Collapse
Affiliation(s)
- Isabella Russo
- Department of Nutrition and Dietetics, Monash University, Notting Hill, VIC, Australia
| | - Paul A. Della Gatta
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | - Andrew Garnham
- Department of Nutrition and Dietetics, Monash University, Notting Hill, VIC, Australia
| | - Judi Porter
- Department of Nutrition and Dietetics, Monash University, Notting Hill, VIC, Australia
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | - Louise M. Burke
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Ricardo J. S. Costa
- Department of Nutrition and Dietetics, Monash University, Notting Hill, VIC, Australia
| |
Collapse
|
9
|
Russo I, Della Gatta PA, Garnham A, Porter J, Burke LM, Costa RJS. Does the Nutritional Composition of Dairy Milk Based Recovery Beverages Influence Post-exercise Gastrointestinal and Immune Status, and Subsequent Markers of Recovery Optimisation in Response to High Intensity Interval Exercise? Front Nutr 2021; 7:622270. [PMID: 33521041 PMCID: PMC7840831 DOI: 10.3389/fnut.2020.622270] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/10/2020] [Indexed: 12/18/2022] Open
Abstract
This study aimed to determine the effects of flavored dairy milk based recovery beverages of different nutrition compositions on markers of gastrointestinal and immune status, and subsequent recovery optimisation markers. After completing 2 h high intensity interval running, participants (n = 9) consumed a whole food dairy milk recovery beverage (CM, 1.2 g/kg body mass (BM) carbohydrate and 0.4 g/kg BM protein) or a dairy milk based supplement beverage (MBSB, 2.2 g/kg BM carbohydrate and 0.8 g/kg BM protein) in a randomized crossover design. Venous blood samples, body mass, body water, and breath samples were collected, and gastrointestinal symptoms (GIS) were measured, pre- and post-exercise, and during recovery. Muscle biopsies were performed at 0 and 2 h of recovery. The following morning, participants returned to the laboratory to assess performance outcomes. In the recovery period, carbohydrate malabsorption (breath H2 peak: 49 vs. 24 ppm) occurred on MBSB compared to CM, with a trend toward greater gut discomfort. No difference in gastrointestinal integrity (i.e., I-FABP and sCD14) or immune response (i.e., circulating leukocyte trafficking, bacterially-stimulated neutrophil degranulation, and systemic inflammatory profile) markers were observed between CM and MBSB. Neither trial achieved a positive rate of muscle glycogen resynthesis [-25.8 (35.5) mmol/kg dw/h]. Both trials increased phosphorylation of intramuscular signaling proteins. Greater fluid retention (total body water: 86.9 vs. 81.9%) occurred on MBSB compared to CM. Performance outcomes did not differ between trials. The greater nutrient composition of MBSB induced greater gastrointestinal functional disturbance, did not prevent the post-exercise reduction in neutrophil function, and did not support greater overall acute recovery.
Collapse
Affiliation(s)
- Isabella Russo
- Department of Nutrition Dietetics & Food, Monash University, Notting Hill, VIC, Australia
| | - Paul A. Della Gatta
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition, Deakin University, Geelong, VIC, Australia
| | - Andrew Garnham
- Department of Nutrition Dietetics & Food, Monash University, Notting Hill, VIC, Australia
| | - Judi Porter
- Department of Nutrition Dietetics & Food, Monash University, Notting Hill, VIC, Australia
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition, Deakin University, Geelong, VIC, Australia
| | - Louise M. Burke
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Ricardo J. S. Costa
- Department of Nutrition Dietetics & Food, Monash University, Notting Hill, VIC, Australia
| |
Collapse
|
10
|
Rosales AM, Hailes WS, Dodds PS, Marks AN, Ruby BC. Influence of Fluid Delivery Schedule and Composition on Fluid Balance, Physiologic Strain, and Substrate Use in the Heat. Wilderness Environ Med 2021; 32:27-35. [PMID: 33431304 DOI: 10.1016/j.wem.2020.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/28/2020] [Accepted: 10/13/2020] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Wildfire suppression is characterized by high total energy expenditure and water turnover rates. Hydration position stands outline hourly fluid intake rates. However, dose interval remains ambiguous. We aimed to determine the effects of microdosing and bolus-dosing water and microdosing and bolus-dosing carbohydrate-electrolyte solutions on fluid balance, heat stress (physiologic strain index [PSI]), and carbohydrate oxidation during extended thermal exercise. METHODS In a repeated-measures cross-over design, subjects completed four 120-min treadmill trials (1.3 m·s-1, 5% grade, 33°C, 30% relative humidity) wearing a US Forest Service wildland firefighter uniform and a 15-kg pack. Fluid delivery approximated losses calculated from a pre-experiment familiarization trial, providing 22 doses·h-1 or 1 dose·h-1 (46±11, 1005±245 mL·dose-1). Body weight (pre- and postexercise) and urine volume (pre-, during, and postexercise) were recorded. Heart rate, rectal temperature, skin temperature, and steady-state expired air samples were recorded throughout exercise. Statistical significance (P<0.05) was determined via repeated-measures analysis of variance. RESULTS Total body weight loss (n=11, -0.6±0.3 kg, P>0.05) and cumulative urine output (n=11, 677±440 mL, P>0.05) were not different across trials. The micro-dosed carbohydrate-electrolyte trial sweat rate was lower than that of the bolus-dosed carbohydrate-electrolyte, bolus-dosed water, and microdosed water trials (n=11, 0.8±0.2, 0.9±0.2, 0.9±0.2, 0.9±0.2 L·h-1, respectively; P<0.05). PSI was lower at 60 than 120 min (n=12, 3.6±0.7 and 4.5±0.9, respectively; P<0.05), with no differences across trials. The carbohydrate-electrolyte trial's carbohydrate oxidation was higher than water trial's (n=12, 1.5±0.3 and 0.8±0.2 g·min-1, respectively; P<0.05), with no dosing style differences. CONCLUSIONS Equal-volume diverse fluid delivery schedules did not affect fluid balance, PSI, or carbohydrate oxidation during extended thermal work.
Collapse
Affiliation(s)
- Alejandro M Rosales
- University of Montana, Montana Center for Work Physiology and Exercise Metabolism, Missoula, MT
| | - Walter S Hailes
- University of Montana, Montana Center for Work Physiology and Exercise Metabolism, Missoula, MT
| | - Patrick S Dodds
- University of Montana, Montana Center for Work Physiology and Exercise Metabolism, Missoula, MT
| | - Alexander N Marks
- University of Montana, Montana Center for Work Physiology and Exercise Metabolism, Missoula, MT
| | - Brent C Ruby
- University of Montana, Montana Center for Work Physiology and Exercise Metabolism, Missoula, MT.
| |
Collapse
|
11
|
Different Waters for Different Performances: Can We Imagine Sport-Related Natural Mineral Spring Waters? WATER 2021. [DOI: 10.3390/w13020166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Preserving the hydration status means to balance daily fluids and salt losses with gains, where the losses depend on several physiological and environmental factors. Especially for athletes, these losses could be relevant and negatively influence the performance: therefore, their hydro-saline status must be preserved with personalized pre- and rehydration plans all along the performance period. Scientific literature in this field is mainly dedicated to artificial sport drinks. Different territories in most world areas are rich in drinking natural mineral spring waters with saline compositions that reflect their geological origin and that are used for human health (often under medical prescription). However, scarce scientific attention has been dedicated to the use of these waters for athletes. We therefore reviewed the existing literature from the innovative viewpoint of matching spring water mineral compositions with different athletic performances and their hydro-saline requirements.
Collapse
|
12
|
Alwis US, Haddad R, Monaghan TF, Abrams P, Dmochowski R, Bower W, Wein AJ, Roggeman S, Weiss JP, Mourad S, Delanghe J, Everaert K. Impact of food and drinks on urine production: A systematic review. Int J Clin Pract 2020; 74:e13539. [PMID: 32441853 DOI: 10.1111/ijcp.13539] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/14/2020] [Indexed: 12/09/2022] Open
Abstract
CONTEXT The impact of food and drinks on body fluid metabolism is of direct clinical relevance but current evidence remains fragmented. AIM Synthesise current evidence on the role of food and drinks in urine production. METHODS Systematic review as per PRISMA guidelines using MEDLINE and EMBASE databases (completed October 2019). Studies reporting on the effect of food, food constituents, and drinks on urine production were included. Two authors performed an independent extraction of relevant articles using predetermined data sets and completed quality-of-study indicators. RESULTS A total of 49 studies were included, of which 21 enroled human subjects, and 28 were clinically relevant animal studies (all of which utilised rodent models). The included studies were determined to be of variable quality. High dietary sodium, as well as wine, spirits, high-caffeine coffee, and caffeinated energy drinks, increased urine production in human studies. Decreased urine production was associated with low dietary sodium and consumption of milk, orange juice, and high-salt/high-sugar drinks. In animal models, a variety of fruits, vegetables, herbs, spices, and honey were associated with increased urine production. CONCLUSION Current evidence suggests that although several types of food and drinks may impact body fluid metabolism, the quality of the data is variable. Urine production appears to be influenced by multiple factors including composition (ie, moisture, macronutrients, and electrolytes), metabolite load, and the presence of specific diuresis-promoting substances (eg, caffeine, alcohol) and other bioactive phytochemicals. Future research is needed to support current evidence and the physiologic mechanisms underlying these findings.
Collapse
Affiliation(s)
- Upeksha S Alwis
- Department of Human Structure and Repair, Ghent University Hospital, Ghent, Belgium
| | - Rebecca Haddad
- Department of Human Structure and Repair, Ghent University Hospital, Ghent, Belgium
- Sorbonne Université, GRC 001, GREEN Groupe de recherche en Neuro-Urologie, AP-HP, Hôpital Rothschild, Paris, France
| | - Thomas F Monaghan
- Department of Urology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Paul Abrams
- Department of Urology, Bristol Urological Institute, Bristol, UK
| | - Roger Dmochowski
- Department of Urology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wendy Bower
- Department of Medicine and Community Care, University of Melbourne, Melbourne, Australia
| | - Alan J Wein
- Department of Urology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Saskia Roggeman
- Department of Human Structure and Repair, Ghent University Hospital, Ghent, Belgium
| | - Jeffrey P Weiss
- Department of Urology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Sherif Mourad
- Department of Urology, Ain Shams University, Cairo, Egypt
| | - Joris Delanghe
- Department of Diagnostic Sciences, Ghent University Hospital, Ghent, Belgium
| | - Karel Everaert
- Department of Human Structure and Repair, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
13
|
Effect of Drinking Rate on the Retention of Water or Milk Following Exercise-Induced Dehydration. Int J Sport Nutr Exerc Metab 2020; 30:128–138. [PMID: 31801109 DOI: 10.1123/ijsnem.2019-0176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 08/25/2019] [Accepted: 09/12/2019] [Indexed: 11/18/2022]
Abstract
This study investigated the effect of drinking rate on fluid retention of milk and water following exercise-induced dehydration. In Part A, 12 male participants lost 1.9% ± 0.3% body mass through cycle exercise on four occasions. Following exercise, plain water or low-fat milk equal to the volume of sweat lost during exercise was provided. Beverages were ingested over 30 or 90 min, resulting in four beverage treatments: water 30 min, water 90 min, milk 30 min, and milk 90 min. In Part B, 12 participants (nine males and three females) lost 2.0% ± 0.3% body mass through cycle exercise on four occasions. Following exercise, plain water equal to the volume of sweat lost during exercise was provided. Water was ingested over 15 min (DR15), 45 min (DR45), or 90 min (DR90), with either DR15 or DR45 repeated. In both trials, nude body mass, urine volume, urine specific gravity and osmolality, plasma osmolality, and subjective ratings of gastrointestinal symptoms were obtained preexercise and every hour for 3 hr after the onset of drinking. In Part A, no effect of drinking rate was observed on the proportion of fluid retained, but milk retention was greater (p < .01) than water (water 30 min: 57% ± 16%, water 90 min: 60% ± 20%, milk 30 min: 83% ± 6%, and milk 90 min: 85% ± 7%). In Part B, fluid retention was greater in DR90 (57% ± 13%) than DR15 (50% ± 11%, p < .05), but this was within test-retest variation determined from the repeated trials (coefficient of variation: 17%). Within the range of drinking rates investigated the nutrient composition of a beverage has a more pronounced impact on fluid retention than the ingestion rate.
Collapse
|
14
|
|
15
|
Effect of ad libitum intake of lactose-free milk on subsequent performance of collegiate badminton athletes. GERMAN JOURNAL OF EXERCISE AND SPORT RESEARCH 2019. [DOI: 10.1007/s12662-019-00592-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
McCartney D, Irwin C, Cox GR, Desbrow B. The effect of different post-exercise beverages with food on ad libitum fluid recovery, nutrient provision, and subsequent athletic performance. Physiol Behav 2019; 201:22-30. [PMID: 30552922 DOI: 10.1016/j.physbeh.2018.12.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 11/16/2018] [Accepted: 12/12/2018] [Indexed: 11/29/2022]
Abstract
This study investigated the effect of consuming either water or a carbohydrate (CHO)-electrolyte sports beverage ('Sports Drink') ad libitum with food during a 4 h post-exercise recovery period on fluid restoration, nutrient provision and subsequent endurance cycling performance. On two occasions, 16 endurance-trained cyclists; 8 male [M] (age: 31 ± 9 y; VO2max: 54 ± 6 mL·kg-1·min-1) and 8 female [F] (age: 33 ± 8 y; VO2max: 50 ± 7 mL·kg-1·min-1); lost 2.3 ± 0.3% and 1.6 ± 0.3% of their body mass (BM), respectively during 1 h of fixed-intensity cycling. Participants then had ad libitum access to either Water or Sports Drink and food for the first 195 min of a 4 h recovery period. At the conclusion of the recovery period, participants completed a cycling performance test consisting of a 45 min fixed-intensity pre-load and an incremental test to volitional exhaustion (peak power output, PPO). Beverage intake; total water/nutrient intake; and indicators of fluid recovery (BM, urine output, plasma osmolality [POSM]) were assessed periodically throughout trials. Participants returned to a similar state of net positive fluid balance prior to recommencing exercise, regardless of the beverage provided (Water: +0.4 ± 0.5 L; Sports Drink: +0.3 ± 0.3 L, p = 0.529). While Sports Drink increased post-exercise energy (M: +1.8 ± 1.0 MJ; F: +1.3 ± 0.5 MJ) and CHO (M: +114 ± 31 g; F: +84 ± 25 g) intake (i.e. total from food and beverage) (p's < 0.001), this did not improve subsequent endurance cycling performance (Water: 337 ± 40 W [M] and 252 ± 50 W [F]; Sports Drink: 340 ± 40 W [M] and 258 ± 47 W [F], p = 0.242). Recovery beverage recommendations should consider the post-exercise environment (i.e. the availability of food), an individual's tolerance for food and fluid pre-/post-exercise, the immediate requirements for refuelling (i.e. CHO demands of the activity) and the athlete's overall dietary goals.
Collapse
Affiliation(s)
- Danielle McCartney
- School of Allied Health Sciences, Griffith University, Gold Coast, Queensland, Australia.
| | - Christopher Irwin
- School of Allied Health Sciences, Griffith University, Gold Coast, Queensland, Australia
| | - Gregory R Cox
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Queensland, Australia
| | - Ben Desbrow
- School of Allied Health Sciences, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
17
|
James LJ, Stevenson EJ, Rumbold PLS, Hulston CJ. Cow's milk as a post-exercise recovery drink: implications for performance and health. Eur J Sport Sci 2018; 19:40-48. [DOI: 10.1080/17461391.2018.1534989] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Lewis J. James
- School of Sport, Exercise and Health Sciences, National Centre of Sport and Exercise Medicine, Loughborough University, Loughborough, UK
| | - Emma J. Stevenson
- Faculty of Medical Sciences, Institute of Cellular Medicine, Human Nutrition Research Centre, Newcastle University, Newcastle upon Tyne, UK
| | - Penny L. S. Rumbold
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Carl J. Hulston
- School of Sport, Exercise and Health Sciences, National Centre of Sport and Exercise Medicine, Loughborough University, Loughborough, UK
| |
Collapse
|
18
|
Marangoni F, Pellegrino L, Verduci E, Ghiselli A, Bernabei R, Calvani R, Cetin I, Giampietro M, Perticone F, Piretta L, Giacco R, La Vecchia C, Brandi ML, Ballardini D, Banderali G, Bellentani S, Canzone G, Cricelli C, Faggiano P, Ferrara N, Flachi E, Gonnelli S, Macca C, Magni P, Marelli G, Marrocco W, Miniello VL, Origo C, Pietrantonio F, Silvestri P, Stella R, Strazzullo P, Troiano E, Poli A. Cow's Milk Consumption and Health: A Health Professional's Guide. J Am Coll Nutr 2018; 38:197-208. [PMID: 30247998 DOI: 10.1080/07315724.2018.1491016] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The most recent scientific evidence supports the consumption of cow's milk and dairy products as part of a balanced diet. However, these days, the public and practicing physicans are exposed to a stream of inconsistent (and often misleading) information regarding the relationship between cow's milk intake and health in the lay press and in the media. The purpose of this article, in this context, is to facilitate doctor-patient communication on this topic, providing physicians with a series of structured answers to frequently asked patient questions. The answers range from milk and milk-derived products' nutritional function across the life span, to their relationship with diseases such as osteoporosis and cancer, to lactose intolerance and milk allergy, and have been prepared by a panel of experts from the Italian medical and nutritional scientific community. When consumed according to appropriate national guidelines, milk and its derivatives contribute essential micro- and macronutrients to the diet, especially in infancy and childhood where bone mass growth is in a critical phase. Furthermore, preliminary evidence suggests potentially protective effects of milk against overweight, obesity, diabetes, and cardiovascular disease, while no clear data suggest a significant association between milk intake and cancer. Overall, current scientific literature suggests that an appropriate consumption of milk and its derivatives, according to available nutritional guidelines, may be beneficial across all age groups, with the exception of specific medical conditions such as lactose intolerance or milk protein allergy. Key teaching points: Milk and its derivatives contribute essential micro and macronutrients to the diet, when consumed according to appropriate national guidelines, especially in infancy and childhood where bone mass growth is in a critical phase. Preliminary evidence suggests potentially protective effects of milk against overweight, obesity, diabetes and cardiovascular disease No clear data are available about the association between milk intake and cancer. Current scientific literature suggests that an appropriate consumption of milk and its derivatives may be beneficial at all ages, with the exception of specific medical conditions such as lactose intolerance or milk protein allergy.
Collapse
Affiliation(s)
| | - Luisa Pellegrino
- b Department of Food, Environmental and Nutritional Sciences , Università degli Studi di Milano , Milano , Italy
| | - Elvira Verduci
- c Department of Health Sciences, San Paolo Hospital , ASST Santi Paolo e Carlo, Università degli Studi di Milano and SIP-Italian Society of Pediatrics , Milano , Italy
| | - Andrea Ghiselli
- d CREA-Alimenti e Nutrizione, Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Roma and SISA-Italian Society of Nutritional Science , Roma , Italy
| | - Roberto Bernabei
- e Institute of Internal Medicine and Geriatrics- Catholic University of the Sacred Heart , Roma , Italy
| | - Riccardo Calvani
- e Institute of Internal Medicine and Geriatrics- Catholic University of the Sacred Heart , Roma , Italy
| | - Irene Cetin
- f Department of Biomedical and Clinical Sciences , Unit of Obstetrics and Gynecology, Hospital Vittore Buzzi , Milano , Italy
| | | | - Francesco Perticone
- h Unit of Obstetrics and Gynecology, Hospital Vittore Buzzi , Università degli Studi "Magna Graecia", Catanzaro and SIMI-Italian Society of Internal Medicine , Catanzaro , Italy
| | - Luca Piretta
- i Alimentary Science and Human Nutrition, Università Campus Biomedico , Roma , Italy
| | - Rosalba Giacco
- j Institute of Food Science, National Research Council, Avellino and SID - Italian Diabetes Society , Avellino , Italy
| | - Carlo La Vecchia
- k Department of Clinical Sciences and Community Health , Università degli Studi di Milano , Milano , Italy
| | | | | | - Giuseppe Banderali
- n Department of Health Sciences, San Paolo Hospital , ASST Santi Paolo e Carlo, Università degli Studi di Milano and SINUPE-Italian Society of Pediatric Nutrition , Milano , Italy
| | - Stefano Bellentani
- o SIGE-Italian Society of Gastroenterology and Digestive Endoscopy , Modena , Italy
| | - Giuseppe Canzone
- p Obstetrics and Gynecology Unit , San Cimino Hospital, Termini Imerese and SIGO-Italian Society of Gynecology and Obstetrics , Termini Imerese , Italy
| | | | - Pompilio Faggiano
- r Cardiology Division , Spedali Civili and University of Brescia and GICR-Italian Association for Cardiovascular Prevention and Rehabilitation , Brescia , Italy
| | - Nicola Ferrara
- s Department of Translational Medical Sciences , University of Naples 'Federico II' and SIGG-Italian Society of Gerontology and Geriatrics , Naples , Italy
| | - Evelina Flachi
- t SIPREC-Italian Society for Cardiovascular Prevention , Milan , Italy
| | - Stefano Gonnelli
- u Department of Medicine, Surgery and Neuroscience , University of Siena and SIOMMS-Italian Society for Osteoporosis, Mineral Metabolism and Bone Diseases , Siena , Italy
| | - Claudio Macca
- v Dietetics and Clinical Nutrition Unit , Spedali Civili Brescia and ADI - Italian Association of Dietetics , Brescia , Italy
| | - Paolo Magni
- w Department of Pharmacological and Biomolecular Sciences , Università degli Studi di Milano and SISA-Italian Society for the Study of Atherosclerosis , Milano , Italy
| | - Giuseppe Marelli
- x Department of Diabetology Endocrinology and Clinical Nutrition , ASST di Vimercate and AMD - Italian Association of Diabetologists , Vimercate , Italy
| | - Walter Marrocco
- y FIMMG-Italian Federation of General Medicine Doctors and SIMPeSV-Italian Society of Preventive and Lifestyle Medicine , Rome , Italy
| | - Vito Leonardo Miniello
- z Department of Paediatrics , University of Bari and SIPPS-Italian Society of Preventive and Social Pediatrics , Bari , Italy
| | - Carlo Origo
- aa Department of Pediatric Orthoaedics , A.O. SS Antonio e Biagio e Cesare Arrigo, Alessandria and SITOP-Italian Society of Orthopaedics and Traumatology , Alessandria , Italy
| | - Filomena Pietrantonio
- ab Internal Medicine Unit , - H2-Albano Hospital Center, ASL Roma 6, Roma and FADOI-Federation of the Associations of Internist Hospital Managers , Manerbio , Italy
| | - Paolo Silvestri
- ac Interventional Cardiology-CCU Department , G. Rummo Hospital, Benevento and ANMCO-Italian National Association of Hospital Cardiologists , Benevento , Italy
| | - Roberto Stella
- ad SNaMID-National Interdisciplinary Medical Society Primary Care , Milan , Italy
| | - Pasquale Strazzullo
- ae Department of Clinical Medicine and Surgery , ESH Excellence Center of Hypertension, "Federico II" University of Naples and SINU-Italian Society of Human Nutrition , Napoli , Italy
| | | | - Andrea Poli
- a NFI-Nutrition Foundation of Italy , Milano , Italy
| |
Collapse
|
19
|
McCartney D, Irwin C, Cox GR, Desbrow B. Fluid, energy, and nutrient recovery via ad libitum intake of different commercial beverages and food in female athletes. Appl Physiol Nutr Metab 2018; 44:37-46. [PMID: 29953820 DOI: 10.1139/apnm-2018-0176] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This study investigated the effect of consuming different commercial beverages with food ad libitum after exercise on fluid, energy, and nutrient recovery in trained females. On 4 separate occasions, 8 females (body mass (BM): 61.8 ± 10.7 kg; maximal oxygen uptake: 46.3 ± 7.5 mL·kg-1·min-1) lost 2.0% ± 0.3% BM cycling at ∼75% maximal oxygen uptake before completing a 4-h recovery period with ad libitum access to 1 of 4 beverages: Water, Powerade (Sports Drink), Up & Go Reduced Sugar (Lower Sugar (LS)-MILK) or Up & Go Energize (Higher Protein (HP)-MILK). Participants also had two 15-min opportunities to access food within the first 2 h of the recovery period. Beverage intake, total water/nutrient intake, and indicators of fluid recovery (BM, urine output, plasma osmolality), gastrointestinal tolerance and palatability were assessed periodically. While total water intake (from food and beverage) (Water: 1918 ± 580 g; Sports Drink: 1809 ± 338 g; LS-MILK: 1458 ± 431 g; HP-MILK: 1523 ± 472 g; p = 0.010) and total urine output (Water: 566 ± 314 g; Sports Drink: 459 ± 290 g; LS-MILK: 220 ± 53 g; HP-MILK: 230 ± 117 g; p = 0.009) differed significantly by beverage, the quantity of ingested water retained was similar across treatments (Water: 1352 ± 462 g; Sports Drink: 1349 ± 407 g; LS-MILK: 1238 ± 400 g; HP-MILK: 1293 ± 453 g; p = 0.691). Total energy intake (from food and beverage) increased in proportion to the energy density of the beverage (Water: 4129 ± 1080 kJ; Sports Drink: 5167 ± 643 kJ; LS-MILK: 6019 ± 1925 kJ; HP-MILK: 7096 ± 2058 kJ; p = 0.014). When consumed voluntarily and with food, different beverages promote similar levels of fluid recovery, but alter energy/nutrient intakes. Providing access to food and understanding the longer-term dietary goals of female athletes are important considerations when recommending a recovery beverage.
Collapse
Affiliation(s)
- Danielle McCartney
- a School of Allied Health Sciences, Griffith University, Gold Coast, Queensland, 4215, Australia
| | - Christopher Irwin
- a School of Allied Health Sciences, Griffith University, Gold Coast, Queensland, 4215, Australia
| | - Gregory R Cox
- b Sports Nutrition, Australian Institute of Sport, Gold Coast, Queensland, Australia
| | - Ben Desbrow
- a School of Allied Health Sciences, Griffith University, Gold Coast, Queensland, 4215, Australia
| |
Collapse
|
20
|
Li L, Sun FH, Huang WYJ, Wong SHS. Effects of whey protein in carbohydrate-electrolyte drinks on post-exercise rehydration. Eur J Sport Sci 2018; 18:685-694. [PMID: 29490577 DOI: 10.1080/17461391.2018.1442499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The purpose of this study was to examine the effects of different amounts of whey protein in carbohydrate-electrolyte (CE) drinks on post-exercise rehydration. Ten males completed 5 trials in a randomised cross-over design. A 4-h recovery was applied after a 60-min run at 65% VO2peak in each trial. During recovery, the participants ingested a high-carbohydrate CE drink (CE-H), a low-carbohydrate CE drink (CE-L), a high-whey-protein (33 g·L-1) CE drink (CW-H), a medium-whey-protein (22 g·L-1) CE drink (CW-M) or a low-whey-protein (15 g·L-1) CE drink (CW-L) in a volume equivalent to 150% of their body mass (BM) loss. The drinks were provided in six equal boluses and consumed by the participants within 150 min in each trial. After exercise, a BM loss of 2.15% ± 0.05% was achieved. Urine production was less in the CW-M and CW-H trials during recovery, which induced a greater fluid retention in the CW-M (51.0% ± 5.7%) and CW-H (55.4% ± 3.8%) trials than in any other trial (p < .05). The plasma albumin content was higher in the CW-H trial than in the CE-H and CE-L trials at 2 h (p < .05) and 3 h (p < .01) during recovery. The aldosterone concentration was lower in the CE-H trial than in the CW-M and CW-H trials after recovery (p < .05). It is concluded that the rehydration was improved when whey protein was co-ingested with CE drinks during a 4-h recovery after a 60-min run. However, this additive effect was only observed when whey protein concentration was at least 22 g·L-1 in the current study.
Collapse
Affiliation(s)
- Liang Li
- a Youth Sport Research & Development Center , China Institute of Sport Science , Beijing , People's Republic of China
| | - Feng-Hua Sun
- b Department of Health and Physical Education , The Education University of Hong Kong , Tai Po , New Territories , Hong Kong
| | - Wendy Ya-Jun Huang
- c Department of Physical Education , Hong Kong Baptist University , Kowloon Tong , Kowloon , Hong Kong
| | - Stephen Heung-Sang Wong
- d Department of Sports Science and Physical Education , The Chinese University of Hong Kong , Shatin , New Territories , Hong Kong
| |
Collapse
|
21
|
Evans GH, James LJ, Shirreffs SM, Maughan RJ. Optimizing the restoration and maintenance of fluid balance after exercise-induced dehydration. J Appl Physiol (1985) 2017; 122:945-951. [PMID: 28126906 DOI: 10.1152/japplphysiol.00745.2016] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 01/10/2017] [Accepted: 01/17/2017] [Indexed: 11/22/2022] Open
Abstract
Hypohydration, or a body water deficit, is a common occurrence in athletes and recreational exercisers following the completion of an exercise session. For those who will undertake a further exercise session that day, it is important to replace water losses to avoid beginning the next exercise session hypohydrated and the potential detrimental effects on performance that this may lead to. The aim of this review is to provide an overview of the research related to factors that may affect postexercise rehydration. Research in this area has focused on the volume of fluid to be ingested, the rate of fluid ingestion, and fluid composition. Volume replacement during recovery should exceed that lost during exercise to allow for ongoing water loss; however, ingestion of large volumes of plain water results in a prompt diuresis, effectively preventing longer-term maintenance of water balance. Addition of sodium to a rehydration solution is beneficial for maintenance of fluid balance due to its effect on extracellular fluid osmolality and volume. The addition of macronutrients such as carbohydrate and protein can promote maintenance of hydration by influencing absorption and distribution of ingested water, which in turn effects extracellular fluid osmolality and volume. Alcohol is commonly consumed in the postexercise period and may influence postexercise rehydration, as will the coingestion of food. Future research in this area should focus on providing information related to optimal rates of fluid ingestion, advisable solutions to ingest during different duration recovery periods, and confirmation of mechanistic explanations for the observations outlined.
Collapse
Affiliation(s)
- Gethin H Evans
- School of Healthcare Science, Manchester Metropolitan University, Manchester, United Kingdom;
| | - Lewis J James
- School of Sport, Exercise, and Health Sciences, Loughborough University, Loughborough, Leicestershire, United Kingdom; and
| | - Susan M Shirreffs
- School of Medicine, University of St. Andrews, St. Andrews, United Kingdom
| | - Ronald J Maughan
- School of Sport, Exercise, and Health Sciences, Loughborough University, Loughborough, Leicestershire, United Kingdom; and
| |
Collapse
|