1
|
Pan D, Yang L, Yang X, Xu D, Wang S, Gao H, Liu H, Xia H, Yang C, Lu Y, Sun J, Wang Y, Sun G. Potential nutritional strategies to prevent and reverse sarcopenia in aging process: Role of fish oil-derived ω-3 polyunsaturated fatty acids, wheat oligopeptide and their combined intervention. J Adv Res 2024; 57:77-91. [PMID: 37061218 PMCID: PMC10918331 DOI: 10.1016/j.jare.2023.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/24/2023] [Accepted: 04/10/2023] [Indexed: 04/17/2023] Open
Abstract
INTRODUCTION Nutritional support is potentially considered an essential step to prevent muscle loss and enhance physical function in older adults. OBJECTIVES This study aimed to assess the role of potential nutritional strategies, i.e., fish oil-derived ω-3 polyunsaturated fatty acids (PUFAs), wheat oligopeptide and their combined intervention, in preventing and reversing sarcopenia in aging process. METHODS One hundred 25-month-old Sprague-Dawley rats were randomly divided into 10 groups, and 10 newly purchased 6-month-old rats were included in young control group (n = 10). Fish oil (200, 400 or 800 mg/kg body weight), wheat oligopeptide (100, 200 or 400 mg/kg body weight), fish oil + wheat oligopeptide (800 + 100, 400 + 200 or 200 + 400 mg/kg body weight) or the equal volume of solvent were administered daily by gavage for 10 weeks. The effects of these interventions on natural aging rats were evaluated. RESULTS All intervention groups had a significant increase in muscle mass and grip strength and reduction in perirenal fat weight when compared to the aged control group (P < 0.05). The results of biochemical parameters, magnetic resonance imaging, proteomics and western blot suggested that the combination of wheat oligopeptide and fish oil-derived ω-3 PUFA, especially group WFM 2 (400 + 200 mg/kg body weight fish oil + wheat oligopeptide), was found to be more effective against aging-associated muscle loss than single intervention. Additionally, the interventions ameliorated fatty infiltration, muscle atrophy, and congestion in the intercellular matrix, and inflammatory cell infiltration in muscle tissue. The interventions also improved oxidative stress, anabolism, hormone levels, and inflammatory levels of skeletal muscle. CONCLUSIONS The combination of fish oil-derived ω-3 PUFA and wheat oligopeptide was found to be a promising nutritional support to prevent and reverse sarcopenia. The potential mechanism involved the promotion of protein synthesis and muscle regeneration, as well as the enhancement of muscle strength.
Collapse
Affiliation(s)
- Da Pan
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, 210009 Nanjing, PR China
| | - Ligang Yang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, 210009 Nanjing, PR China
| | - Xian Yang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, 210009 Nanjing, PR China
| | - Dengfeng Xu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, 210009 Nanjing, PR China
| | - Shaokang Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, 210009 Nanjing, PR China; School of Medicine, Xizang Minzu University, 712082 Xianyang, PR China
| | - Han Gao
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Hechun Liu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, 210009 Nanjing, PR China; Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, 210009 Nanjing, PR China
| | - Hui Xia
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, 210009 Nanjing, PR China
| | - Chao Yang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, 210009 Nanjing, PR China; Wuxi School of Medicine, Jiangnan University, 214122 Wuxi, PR China
| | - Yifei Lu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, 210009 Nanjing, PR China
| | - Jihan Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, 210009 Nanjing, PR China
| | - Yuanyuan Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, 210009 Nanjing, PR China
| | - Guiju Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, 210009 Nanjing, PR China.
| |
Collapse
|
2
|
Fish Oil Enriched n-3 Polyunsaturated Fatty Acids Improve Ketogenic Low-Carbohydrate/High-Fat Diet-Caused Dyslipidemia, Excessive Fat Accumulation, and Weight Control in Rats. Nutrients 2022; 14:nu14091796. [PMID: 35565762 PMCID: PMC9101890 DOI: 10.3390/nu14091796] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
Low-carbohydrate and high-fat diets have been used for body weight (BW) control, but their adverse effects on lipid profiles have raised concern. Fish oil (FO), rich in omega-3 polyunsaturated fatty acids, has profound effects on lipid metabolism. We hypothesized that FO supplementation might improve the lipid metabolic disturbance elicited by low-carbohydrate and high-fat diets. Male SD rats were randomized into normal control diet (NC), high-fat diet (HF), and low-carbohydrate/high-fat diet (LC) groups in experiment 1, and NC, LC, LC + 5% FO (5CF), and LC + 10% FO diet (10CF) groups in experiment 2. The experimental duration was 11 weeks. In the LC group, a ketotic state was induced, and food intake was decreased; however, it did not result in BW loss compared to either the HF or NC groups. In the 5CF group, rats lost significant BW. Dyslipidemia, perirenal and epididymal fat accumulation, hepatic steatosis, and increases in triglyceride and plasma leptin levels were observed in the LC group but were attenuated by FO supplementation. These findings suggest that a ketogenic low-carbohydrate/high-fat diet with no favorable effect on body weight causes visceral and liver lipid accumulation. FO supplementation not only aids in body weight control but also improves lipid metabolism in low-carbohydrate/high-fat diet-fed rats.
Collapse
|
3
|
Komiya Y, Kobayashi C, Uchida N, Otsu S, Tanio T, Yokoyama I, Nagasao J, Arihara K. Effect of dietary fish oil intake on ubiquitin ligase expression during muscle atrophy induced by sciatic nerve denervation in mice. Anim Sci J 2019; 90:1018-1025. [PMID: 31132809 DOI: 10.1111/asj.13224] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/03/2019] [Accepted: 04/18/2019] [Indexed: 12/11/2022]
Abstract
Dietary fish oil intake improves muscle atrophy in several atrophy models however the effect on denervation-induced muscle atrophy is not clear. Thus, the aim of this study was to investigate the effects of dietary fish oil intake on muscle atrophy and the expression of muscle atrophy markers induced by sciatic nerve denervation in mice. We performed histological and quantitative mRNA expression analysis of muscle atrophy markers in mice fed with fish oil with sciatic nerve denervation. Histological analysis indicated that dietary fish oil intake slightly prevented the decrease of muscle fiber diameter induced by denervation treatment. In addition, dietary fish oil intake suppressed the MuRF1 (tripartite motif-containing 63) expression up-regulated by denervation treatment, and this was due to decreased tumor necrosis factor-alpha (TNF-α) production in skeletal muscle. We concluded that dietary fish oil intake suppressed MuRF1 expression by decreasing TNF-α production during muscle atrophy induced by sciatic nerve denervation in mice.
Collapse
Affiliation(s)
- Yusuke Komiya
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Chiaki Kobayashi
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Naoyasu Uchida
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Shohei Otsu
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Tatsuki Tanio
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Issei Yokoyama
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Jun Nagasao
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Keizo Arihara
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Japan
| |
Collapse
|
4
|
Natural Isotope Abundances of Carbon and Nitrogen in Tissue Proteins and Amino Acids as Biomarkers of the Decreased Carbohydrate Oxidation and Increased Amino Acid Oxidation Induced by Caloric Restriction under a Maintained Protein Intake in Obese Rats. Nutrients 2019; 11:nu11051087. [PMID: 31100870 PMCID: PMC6567081 DOI: 10.3390/nu11051087] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/10/2019] [Accepted: 05/14/2019] [Indexed: 12/14/2022] Open
Abstract
A growing body of evidence supports a role for tissue-to-diet 15N and 13C discrimination factors (Δ15N and Δ13C), as biomarkers of metabolic adaptations to nutritional stress, but the underlying mechanisms remain poorly understood. In obese rats fed ad libitum or subjected to gradual caloric restriction (CR), under a maintained protein intake, we measured Δ15N and Δ13C levels in tissue proteins and their constitutive amino acids (AA) and the expression of enzymes involved in the AA metabolism. CR was found to lower protein mass in the intestine, liver, heart and, to a lesser extent, some skeletal muscles. This was accompanied by Δ15N increases in urine and the protein of the liver and plasma, but Δ15N decreases in the proteins of the heart and the skeletal muscles, alongside Δ13C decreases in all tissue proteins. In Lys, Δ15N levels rose in the plasma, intestine, and some muscles, but fell in the heart, while in Ala, and to a lesser extent Glx and Asx, Δ13C levels fell in all these tissues. In the liver, CR was associated with an increase in the expression of genes involved in AA oxidation. During CR, the parallel rises of Δ15N in urine, liver, and plasma proteins reflected an increased AA catabolism occurring at the level of the liver metabolic branch point, while Δ15N decreases in cardiac and skeletal muscle proteins indicated increased protein and AA catabolism in these tissues. Thus, an increased protein and AA catabolism results in opposite Δ15N effects in splanchnic and muscular tissues. In addition, the Δ13C decrease in all tissue proteins, reflects a reduction in carbohydrate (CHO) oxidation and routing towards non-indispensable AA, to achieve fuel economy.
Collapse
|