1
|
Olmedo M, Santiago S, Romanos-Nanclares A, Aramendia-Beitia JM, Sanchez-Bayona R, Bes-Rastrollo M, Martinez-Gonzalez MA, Toledo E. Dietary carbohydrate quality index and incidence of obesity-related cancers in the "Seguimiento Universidad De Navarra" (SUN) prospective cohort. Eur J Nutr 2024; 63:2449-2458. [PMID: 38814364 PMCID: PMC11490434 DOI: 10.1007/s00394-024-03438-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/15/2024] [Indexed: 05/31/2024]
Abstract
PURPOSE The quality, rather than the quantity, of carbohydrate intake may play a major role in the etiology of obesity-related cancers (ORCs). We assessed the association between a previously defined carbohydrate quality index (CQI) and the risk of developing ORCs in the "Seguimiento Universidad de Navarra" (SUN) cohort. METHODS A total of 18,446 Spanish university graduates [mean age 38 years (SD 12 years), 61% women, mean BMI 23.5 kg/m2 (SD 3.5 kg/m2)], with no personal history of cancer, were followed-up. Baseline CQI was assessed summing quintiles of four previously defined criteria: high dietary fiber intake, low glycemic index (GI), high whole-grain: total-grain carbohydrates ratio and high solid carbohydrates: total carbohydrates ratio. Participants were classified into tertiles of their total CQI. Incident ORCs were confirmed by an oncologist using medical records and by querying the National Death Index blindly to dietary exposures. RESULTS During a median follow-up of 13.7 years, 269 incident cases of ORC were confirmed. A higher CQI was inversely associated with ORC incidence [multivariable-adjusted hazard ratio (HR) for the upper (T3) versus the lowest tertile (T1) of 0.68 (95% CI: 0.47-0.96), p for trend = 0.047]. Particularly, higher dietary fiber intake was inversely associated with ORC, HRT3 vs. T1=0.57 (95% CI 0.37-0.88 p for trend = 0.013). CONCLUSION In this prospective Mediterranean cohort, an inverse association between a better global quality of carbohydrate intake and the risk of ORCs was found. Strategies for cancer prevention should promote a higher quality of carbohydrate intake.
Collapse
Affiliation(s)
- M Olmedo
- Department of Preventive Medicine and Public Health, University of Navarra, C/ Irunlarrea, 1, Pamplona, Pamplona, 31008, Spain
- Department of Medical Oncology, Cancer Center Clínica Universidad de Navarra, Pamplona, Spain
| | - S Santiago
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Department of Nutrition and Food Sciences and Physiology, University of Navarra, Pamplona, Spain
| | - A Romanos-Nanclares
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - J M Aramendia-Beitia
- Department of Medical Oncology, Cancer Center Clínica Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - R Sanchez-Bayona
- Medical Oncology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - M Bes-Rastrollo
- Department of Preventive Medicine and Public Health, University of Navarra, C/ Irunlarrea, 1, Pamplona, Pamplona, 31008, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- CIBERobn, Instituto de Salud Carlos III, Madrid, Spain
| | - M A Martinez-Gonzalez
- Department of Preventive Medicine and Public Health, University of Navarra, C/ Irunlarrea, 1, Pamplona, Pamplona, 31008, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- CIBERobn, Instituto de Salud Carlos III, Madrid, Spain
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, USA
| | - E Toledo
- Department of Preventive Medicine and Public Health, University of Navarra, C/ Irunlarrea, 1, Pamplona, Pamplona, 31008, Spain.
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.
- CIBERobn, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
2
|
Dryer-Beers ER, Griffin J, Matthews PM, Frost GS. Higher Dietary Polyphenol Intake Is Associated With Lower Blood Inflammatory Markers. J Nutr 2024; 154:2470-2480. [PMID: 38740187 PMCID: PMC11375465 DOI: 10.1016/j.tjnut.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/27/2024] [Accepted: 05/01/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Evidence suggests a link between polyphenol intake and reduced incidence of several chronic diseases. This could arise through associations between polyphenol intake and reduced systemic oxidative stress and subsequent inflammation. However, confirming this association is difficult, as few large cohorts allow for comprehensive assessments of both polyphenol intake and markers of systemic inflammation. OBJECTIVES To address this, polyphenol intake was assessed in the UK-based Airwave cohort using 7-d diet diaries and data from Phenol-Explorer to test for associations between polyphenol intake and blood biomarkers of inflammation. METHODS Participants included 9008 males and females aged 17-74 y (median age: 42 y) whose data was included in a cross-sectional analysis. Phenol-Explorer was used to estimate individuals' polyphenol intake from diet data describing the consumption of 4104 unique food items. C-reactive protein (CRP) and fibrinogen were used as blood biomarkers of inflammation. RESULTS There were 448 polyphenols found in reported diet items. Median total polyphenol intake was 1536 mg/d (1058-2092 mg/d). Phenolic acids and flavonoids were the main types of polyphenols, and nonalcoholic beverages, vegetables, and fruit were the primary sources. Variation in energy-adjusted polyphenol intake was explained by age, sex, salary, body mass index, education level, smoking, and alcohol consumption. Linear regressions showed inverse associations between total daily intake and both CRP (β: -0.00702; P < 0.001) and fibrinogen (β: -0.00221; P = 0.038). Associations with specific polyphenol compound groups were also found. Logistic regressions using total polyphenol intake quartiles showed stepwise reductions in the odds of elevated CRP with higher intake (6%, 23%, and 24% compared with quartile 1; P = 0.003), alongside 3% and 7% lower odds per unit of polyphenol consumption equivalent to 1 cup of tea or coffee per day. CONCLUSIONS This study describes polyphenol intake in a large, contemporary UK cohort. We observed associations between higher intake and lower CRP and fibrinogen. This contributes to evidence supporting the health benefits of dietary polyphenols.
Collapse
Affiliation(s)
- Elliot R Dryer-Beers
- Nutrition and Dietetics Research Group, Imperial College London, London, United Kingdom; UK Dementia Research Institute and Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Jennifer Griffin
- Nutrition and Dietetics Research Group, Imperial College London, London, United Kingdom
| | - Paul M Matthews
- UK Dementia Research Institute and Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Gary S Frost
- Nutrition and Dietetics Research Group, Imperial College London, London, United Kingdom.
| |
Collapse
|
3
|
Yang L, Wang L, Bao E, Wang J, Zhu P. Causal association of dietary factors with five common cancers: univariate and multivariate Mendelian randomization studies. Front Nutr 2024; 11:1428844. [PMID: 39135550 PMCID: PMC11317396 DOI: 10.3389/fnut.2024.1428844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Background Daily dietary habits are closely related to human health, and long-term unhealthy dietary intake, such as excessive consumption of alcohol and pickled foods, may promote the development of cancers. However, comprehensive research on the causal relationship between dietary habits and cancer is lacking. Therefore, this study aimed to reveal the potential causal link between dietary risk factors and the prognosis of cancer-related to genetic susceptibility. Methods GWAS (Genome-Wide Association Studies) summary data on dietary habits and five common types of cancer and their pathological subtypes were obtained from the UK Biobank and various cancer association consortia. A univariable two-sample Mendelian randomization (UVMR) and FDR correction analysis was conducted to explore the causal relationships between 45 dietary habits and five common types of cancer and their histopathological subtypes. In addition, multivariable Mendelian randomization analysis (MVMR) was performed to adjust for traditional risk factors for dietary habits, and the direct or indirect effects of diet on cancer were evaluated. Finally, the prognostic impact of selected instrumental variables on cancer was analyzed using an online data platform. Results In the UVMR analysis, four dietary habits were identified as risk factors for cancer, while five dietary habits were identified as protective factors. Among the latter, one dietary habit showed a significant association with cancer even after FDR correction, indicating a potential causal relationship. The MVMR analysis revealed that weekly beer and cider intake, may act as an independent risk factor for cancer development. Other causal associations between dietary habits and cancer risk may be mediated by intermediate factors. In the prognostic analysis, the SNPs (Single Nucleotide Polymorphisms) of average weekly beer and cider intake were set as independent risk factors and were found to significantly impact overall survival (OS) and cancer-specific survival (CSS) in lung cancer. Conclusion This causal relationship study supports the notion that adjusting daily dietary habits and specific dietary interventions may decrease the risk of cancer.
Collapse
Affiliation(s)
- Lin Yang
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Li Wang
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Erhao Bao
- Department of Urology, The First People's Hospital of Dazhou, Dazhou, Sichuan, China
| | - Jiahao Wang
- Department of Urology, People's Hospital of Xichong County, Nanchong, Sichuan, China
| | - Pingyu Zhu
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
4
|
Mori N, Murphy N, Sawada N, Achaintre D, Yamaji T, Scalbert A, Ishihara J, Takachi R, Nakamura K, Tanaka J, Iwasaki M, Iso H, Inoue M, Gunter MJ, Tsugane S. Reproducibility and dietary correlates of plasma polyphenols in the JPHC-NEXT Protocol Area study. Eur J Clin Nutr 2024; 78:34-42. [PMID: 37891229 DOI: 10.1038/s41430-023-01349-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND In recent years, an increasing number of epidemiological studies have suggested a role of polyphenols in the prevention of chronic diseases. Prospective cohort studies have typically measured polyphenol concentrations in a single blood sample and the reproducibility of plasma polyphenol measurements is largely unknown. OBJECTIVE We evaluated the reproducibility of 35 plasma polyphenols collected at an interval of 1-year. We also examined correlations of these polyphenols with food group intakes calculated from weighed food records (WFR) and food frequency questionnaire (FFQ). METHODS The study included 227 middle-aged participants from the JPHC-NEXT Protocol Area in Japan. We measured 35 polyphenols in plasma collected at two points 1-year apart. Food group intakes were calculated from 12-day WFR and FFQ. For the reproducibility analysis, the intraclass correlation coefficient (ICC) of 35 polyphenol concentrations were examined between the two points. Pearson's partial correlations was used to assess the correlation between polyphenols and food groups. RESULTS Moderate- to high ICCs were observed for tea-originated polyphenols such as gallic acid, quercetin, epigallocatechin, and kaempferol - and coffee-derived polyphenols, such as caffeic acid, and ferulic acid. For the dietary analyses, moderate correlations were observed for non-alcoholic beverages intake and epigallocatechin, epicatechin, catechin, and gallic acid. For green tea, higher correlations were observed with these polyphenols. CONCLUSION Plasma concentrations of tea and coffee-related polyphenols, except for catechin, had good reproducibility over a 1-year period. The correlations between intake of non-alcoholic beverages, particularly green tea, and tea polyphenols, indicated moderate- to high correlations.
Collapse
Affiliation(s)
- Nagisa Mori
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France.
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, National Cancer Center, Tokyo, Japan.
- Section of Nutritional Epidemiology, Department of Nutritional Epidemiology and Shokuiku, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.
| | - Neil Murphy
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Norie Sawada
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, National Cancer Center, Tokyo, Japan
| | - David Achaintre
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
- School of Plant Science and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Taiki Yamaji
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, National Cancer Center, Tokyo, Japan
| | - Augustin Scalbert
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Junko Ishihara
- Graduate School of Environmental Health, Azabu University, Kanagawa, Japan
| | - Ribeka Takachi
- Department of Food Science and Nutrition, Nara Women's University Graduate School of Humanities and Sciences, Nara, Japan
| | - Kazutoshi Nakamura
- Division of Preventive Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Junta Tanaka
- Department of Health Promotion Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Motoki Iwasaki
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, National Cancer Center, Tokyo, Japan
| | - Hiroyasu Iso
- Institute of Global Health Policy Research, Bureau of International Health Cooperation, National Center for Global Health and Medicine, Tokyo, Japan
| | - Manami Inoue
- Division of Prevention, National Cancer Center Institute for Cancer Control, National Cancer Center, Tokyo, Japan
| | - Marc J Gunter
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Shoichiro Tsugane
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, National Cancer Center, Tokyo, Japan
- Graduate School of Public Health, International University of Health and Welfare, Tokyo, Japan
| |
Collapse
|
5
|
Murugesan M, Kandhavelu M, Thiyagarajan R, Natesan S, Rajendran P, Murugesan A. Marine halophyte derived polyphenols inhibit glioma cell growth through mitogen-activated protein kinase signaling pathway. Biomed Pharmacother 2023; 159:114288. [PMID: 36682245 DOI: 10.1016/j.biopha.2023.114288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
Plants that are pharmacologically significant require intensive phytochemical characterization for bioactive profiling of the compounds, which has enabled their safe use in ayurvedic medicine. The present study is focused on the phytochemical analyses, quantitative estimation and profiling of secondary metabolites of leaf extract, as well as the antioxidant and cytotoxic activity of the potent halophytes such as Avicennia marina, Ceriops tagal, Ipomoea pes-caprae, and Sonneratia apetala. The in vitro antioxidant property was investigated using DPPH, ferric reducing antioxidant capacity (FRAP) assay. Bioactive compounds such as phenols, flavonoids, saponin and alkaloids were quantitatively estimated from the extracts of A.marina, C.tagal, I.pes-capra and S.apetala, which possessed higher phenol content than the other studied halophytes. The extracts at 200 µg/ml revealed higher antioxidant activity than the standard ascorbic acid and it functions as a powerful oxygen free radical scavenger with 77.37%, 75.35% and 72.84% for S.apetala, I.pes-caprae and C.tagal respectively and with least IC50 for I.pes-caprae (11.95 µg/ml) followed by C.tagal (49.94 µg/ml). Cell viability and anti-proliferative activity of different polyphenolic fractions of C.tagal (CT1 and CT2) and I.pes-caprae fraction (IP) against LN229, SNB19 revealed Ipomoea as the promising anti-cytotoxic fraction. IP-derived polyphenols was further subjected to apoptosis, migration assay, ROS and caspase - 3 and - 7 to elucidate its potentiality as a therapeutic drug. IP-polyphenols was found to have higher percentage of inhibition than the CT1 and CT2 polyphenols of C.tagal on comparison with TMZ. All the above-mentioned in-vitro analysis further validated the ability of IP-polyphenols inducing cell death via ROS-mediated caspase dependent pathway. Further, proteomic and phospho-proteomic analysis revealed the potential role of IP-polyphenols in the regulation of cell proliferation through MMK3, p53, p70 S6 kinase and RSK1 proteins involved in mitogen-activated protein kinase signaling pathway. Our analysis confirmed the promising role of I.pes-caprae derived polyphenols as an anti-metastatic compound against GBM cells.
Collapse
Affiliation(s)
- Monica Murugesan
- Department of Zoology, Lady Doak College, Madurai Kamaraj University, Thallakulam, Madurai 625002, India
| | - Meenakshisundaram Kandhavelu
- BioMeditech and Tays Cancer Center, Tampere University Hospital, P.O. Box 553, 33101 Tampere, Finland; Molecular Signaling Group, Faculty of Medicine and Health Technology, Tampere University, P.O. Box 553, 33101 Tampere, Finland.
| | - Ramesh Thiyagarajan
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Kingdom of Saudi Arabia
| | - Sankar Natesan
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai 625021, India
| | - Priyatharsini Rajendran
- Department of Zoology, Lady Doak College, Madurai Kamaraj University, Thallakulam, Madurai 625002, India
| | - Akshaya Murugesan
- Department of Biotechnology, Lady Doak College, Madurai Kamaraj University, Thallakulam, Madurai 625002, India.
| |
Collapse
|
6
|
The Involvement of Natural Polyphenols in Molecular Mechanisms Inducing Apoptosis in Tumor Cells: A Promising Adjuvant in Cancer Therapy. Int J Mol Sci 2023; 24:ijms24021680. [PMID: 36675194 PMCID: PMC9863215 DOI: 10.3390/ijms24021680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Various literature data show how a diet rich in vegetables could reduce the incidence of several cancers due to the contribution of the natural polyphenols contained in them. Polyphenols are attributed multiple pharmacological actions such as anti-inflammatory, anti-oxidant, antibiotic, antiseptic, anti-allergic, cardioprotective and even anti-tumor properties. The multiple mechanisms involved in their anti-tumor action include signaling pathways modulation associated with cell proliferation, differentiation, migration, angiogenesis, metastasis and cell death. Since the dysregulation of death processes is involved in cancer etiopathology, the natural compounds able to kill cancer cells could be used as new anticancer agents. Apoptosis, a programmed form of cell death, is the most potent defense against cancer and the main mechanism used by both chemotherapy agents and polyphenols. The aim of this review is to provide an update of literature data on the apoptotic molecular mechanisms induced by some representative polyphenol family members in cancer cells. This aspect is particularly important because it may be useful in the design of new therapeutic strategies against cancer involving the polyphenols as adjuvants.
Collapse
|
7
|
Flavonoid and Phenolic Acid Profiles of Dehulled and Whole Vigna subterranea (L.) Verdc Seeds Commonly Consumed in South Africa. Molecules 2022; 27:molecules27165265. [PMID: 36014504 PMCID: PMC9415687 DOI: 10.3390/molecules27165265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/27/2022] [Accepted: 08/01/2022] [Indexed: 11/24/2022] Open
Abstract
Bambara groundnut (BGN) is an underexploited crop with a rich nutrient content and is used in traditional medicine, but limited information is available on the quantitative characterization of its flavonoids and phenolic acids. We investigated the phenolic profile of whole seeds and cotyledons of five BGN varieties consumed in South Africa using UPLC-qTOF-MS and GC-MS. Twenty-six phenolic compounds were detected/quantified in whole seeds and twenty-four in cotyledon, with six unidentified compounds. Flavonoids include flavan-3-ol (catechin, catechin hexoside-A, catechin hexoside-B), flavonol (quercetin, quercetin-3-O-glucoside, rutin, myricetin, kaempherol), hydroxybenzoic acid (4-Hydroxybenzoic, 2,6 Dimethoxybenzoic, protocatechuic, vanillic, syringic, syringaldehyde, gallic acids), hydroxycinnamic acid (trans-cinnamic, p-coumaric, caffeic, ferulic acids) and lignan (medioresinol). The predominant flavonoids were catechin/derivatives, with the highest content (78.56 mg/g) found in brown BGN. Trans-cinnamic and ferulic acids were dominant phenolic acid. Cotyledons of brown and brown-eyed BGN (317.71 and 378.59 µg/g) had the highest trans-cinnamic acid content, while red seeds had the highest ferulic acid (314.76 µg/g) content. Colored BGN had a significantly (p < 0.05) higher content of these components. Whole BGN contained significantly (p < 0.05) higher amount of flavonoids and phenolic acids, except for the trans-cinnamic acid. The rich flavonoid and phenolic acid content of BGN seeds highlights the fact that it is a good source of dietary phenolics with potential health-promoting properties.
Collapse
|
8
|
Vitamin D and Risk of Obesity-Related Cancers: Results from the SUN (‘Seguimiento Universidad de Navarra’) Project. Nutrients 2022; 14:nu14132561. [PMID: 35807746 PMCID: PMC9268452 DOI: 10.3390/nu14132561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/17/2022] [Accepted: 06/19/2022] [Indexed: 12/03/2022] Open
Abstract
Obesity is associated with a higher risk of several types of cancer, grouped as obesity-related cancers (ORC). Vitamin D deficiency is more prevalent in obese subjects, and it has been suggested to play a role in the association between obesity and cancer risk. The aim of the study was to analyze the association between vitamin D intake and the subsequent risk of ORC in a prospective Spanish cohort of university graduates. The SUN Project, initiated in 1999, is a prospective dynamic multipurpose cohort. Participants answered a 556-item lifestyle baseline questionnaire that included a validated food-frequency questionnaire. We performed Cox regression models to estimate the hazard ratios (HRs) of ORC according to quartiles of energy-adjusted vitamin D intake (diet and supplements). We included 18,017 participants (mean age = 38 years, SD = 12 years), with a median follow-up of 12 years. Among 206,783 person-years of follow-up, we identified 225 cases of ORC. We found no significant associations between vitamin D intake and ORC risk after adjusting for potential confounders: HRQ2vsQ1 = 1.19 (95% CI 0.81–1.75), HRQ3vsQ1 = 1.20 (95% CI 0.81–1.78), and HRQ4vsQ1 = 1.02 (95% CI 0.69–1.51). Dietary and supplemented vitamin D do not seem to be associated with ORC prevention in the middle-aged Spanish population.
Collapse
|
9
|
Bioactive components in Bambara groundnut ( Vigna subterraenea (L.) Verdc) as a potential source of nutraceutical ingredients. Heliyon 2022; 8:e09024. [PMID: 35284682 PMCID: PMC8913303 DOI: 10.1016/j.heliyon.2022.e09024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 09/09/2020] [Accepted: 02/24/2022] [Indexed: 12/12/2022] Open
Abstract
The utilization of nutraceuticals on a global scale has significantly increased over the past few years due to their reported health benefits and consumer's reluctance to consume synthetic drugs. This paper provides information regarding new and potential value added uses of biologically active compounds in Bambara groundnut (BGN) as ingredients that could be further researched and exploited for various applications. Nutraceutical is a food or part of food that apart from providing basic nutrients, offers medicinal benefits either by prevention and or treatment of an illness. BGN is a legume with rich nutrient profile that is under exploited industrially. It is widely used in African traditional medicine for its various health outcome, but has not been explored scientifically for its numerous nutraceutical potentials. Compared to beans BGN has greater quantity of soluble fiber and also have high dietary fiber. It is rich in polyphenolic compound which include flavonoids subgroups like flavonols, flavanols, anthocyanindins, isoflavones and phenolic acids: both benzoic acid and cinnamic acid derivatives, biologically active polyunsaturated fatty acids, proteins and peptides, antioxidant vitamins and minerals. The rising interest and emphasis in plant-based biologically active components (nutraceuticals) for various health promotion, has positioned this African legume as a potential source of nutraceutical ingredients (bioactive components) that could be exploited for improved nutrition and health.
Collapse
|
10
|
Hazafa A, Iqbal MO, Javaid U, Tareen MBK, Amna D, Ramzan A, Piracha S, Naeem M. Inhibitory effect of polyphenols (phenolic acids, lignans, and stilbenes) on cancer by regulating signal transduction pathways: a review. Clin Transl Oncol 2022; 24:432-445. [PMID: 34609675 DOI: 10.1007/s12094-021-02709-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/11/2021] [Indexed: 02/07/2023]
Abstract
Natural products, especially polyphenols (phenolic acids, lignans, and stilbenes) are suggested to be more potent anticancer drugs because of their no or less adverse effects, excess availability, high accuracy, and secure mode of action. In the present review, potential anticancer mechanisms of action of some polyphenols including phenolic acids, lignans, and stilbenes are discussed based on clinical, epidemiological, in vivo, and in vitro studies. The emerging evidence revealed that phenolic acids, lignans, and stilbenes induced apoptosis in the treatment of breast (MCF-7), colon (Caco-2), lung (SKLU-1), prostate (DU-145 and LNCaP), hepatocellular (hepG-2), and cervical (A-431) cancer cells, cell cycle arrest (S/G2/M/G1-phases) in gastric (MKN-45 and MKN-74), colorectal (HCT-116), bladder (T-24 and 5637), oral (H-400), leukemic (HL-60 and MOLT-4) and colon (Caco-2) cancer cells, and inhibit cell proliferation against the prostate (PC-3), liver (LI-90), breast (T47D and MDA-MB-231), colon (HT-29 and Caco-2), cervical (HTB-35), and MIC-1 cancer cells through caspase-3, MAPK, AMPK, Akt, NF-κB, Wnt, CD95, and SIRT1 pathways. Based on accumulated data, we suggested that polyphenols could be considered as a viable therapeutic option in the treatment of cancer cells in the near future.
Collapse
Affiliation(s)
- A Hazafa
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad, 38040, Pakistan.
| | - M O Iqbal
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - U Javaid
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - M B K Tareen
- College of Food Science & Technology, Huazhong Agricultural University, Huazhong, China
| | - D Amna
- Institute of Food Science & Nutrition, Bahauddin Zakariya University, Multan, Pakistan
| | - A Ramzan
- Department of Botany, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - S Piracha
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - M Naeem
- College of Life Science, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
11
|
Moral R, Escrich E. Influence of Olive Oil and Its Components on Breast Cancer: Molecular Mechanisms. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020477. [PMID: 35056792 PMCID: PMC8780060 DOI: 10.3390/molecules27020477] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/31/2021] [Accepted: 01/08/2022] [Indexed: 02/06/2023]
Abstract
Breast cancer is the most frequent malignant neoplasia and a leading cause of mortality in women worldwide. The Mediterranean diet has been proposed as a healthy dietary pattern with protective effects in several chronic diseases, including breast cancer. This diet is characterized by the consumption of abundant plant foods and olive oil as the principal source of fat, which is considered one of the main components with potential antioxidant, anti-inflammatory and anticancer effects. Extra-virgin olive oil (EVOO) has several bioactive compounds, mainly including monounsaturated fatty acids, triterpenes and polyphenols, such as phenolic alcohols (e.g., hydroxytyrosol), secoiridoids (e.g., oleuropein and oleocanthal), lignans (e.g., pinoresinol) or flavonoids (e.g., luteolin). While epidemiological evidence is still limited, experimental in vivo and in vitro data have shown a protective effect of this oil and its compounds on mammary carcinogenesis. Such effects account through complex and multiple mechanisms, including changes in epigenetics, transcriptome and protein expression that modulate several signaling pathways. Molecular targets of EVOO compounds have a role in the acquisition of cancer hallmarks. Although further research is needed to elucidate their beneficial effects on human prevention and progression of the disease, evidence points to EVOO in the context of the Mediterranean diet as a heathy choice, while EVOO components may be promising adjuvants in anticancer strategies.
Collapse
|
12
|
Phenolic content, antioxidant, cytotoxic and antiproliferative effects of fractions of Vigna subterraenea (L.) verdc from Mpumalanga, South Africa. Heliyon 2021; 7:e08397. [PMID: 34901488 PMCID: PMC8637485 DOI: 10.1016/j.heliyon.2021.e08397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/13/2021] [Accepted: 11/10/2021] [Indexed: 12/24/2022] Open
Abstract
Consistent intake of legumes has been correlated with decreased possibility of developing colorectal cancer (CRC) due to the content of some phytochemicals like polyphenols. Bambara groundnut (BGN) is an underutilized crop with a rich nutritional profile, but have not been exploited for its nutraceutical and medicinal benefits. In this study, total polyphenol, flavonoid (flavonol and flavanol) content, antioxidant activity and cytotoxicity/antiproliferative properties of 70% ethanolic extracts of whole BGN, cotyledon and seed coat on Caco-2 and HT-29 colon cancer cells were evaluated. Seed coat had a significantly (p < 0.05) higher composition of total polyphenol, flavonol and flavan-3-ol (flavanol) compared to whole seed and cotyledon. Antioxidant activity determined with ferric reducing antioxidant power (FRAP), 2,2- azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and oxygen radical absorbance capacity (ORAC) assays, showed that seed coat with higher polyphenolic content had significantly (p < 0.05) greater antioxidant activity. BGN fractions demonstrated cytotoxic and antiproliferative effects against HT-29 and Caco-2 colon cancer cells in a dose-dependent manner, with seed coat and whole seed exhibiting greater cytotoxicity and higher antiproliferative activity and colon cancer cell inhibition. Extracts of the cotyledon also showed cytotoxic activity and hindered cancer cell growth/division but to a significantly (p < 0.05) lower magnitude. BGN parts indicated a greater cytotoxic effect and potential to slow down Caco-2 colon cancer cell growth and division over HT-29. This result provides new knowledge on the possible health benefits of BGN, as well as the potential for product development and may influence its consumption and utilisation.
Collapse
|
13
|
Arrigoni R, Ballini A, Santacroce L, Cantore S, Inchingolo A, Inchingolo F, Di Domenico M, Quagliuolo L, Boccellino M. Another look at dietary polyphenols: challenges in cancer prevention and treatment. Curr Med Chem 2021; 29:1061-1082. [PMID: 34375181 DOI: 10.2174/0929867328666210810154732] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/02/2021] [Accepted: 06/15/2021] [Indexed: 11/22/2022]
Abstract
Cancer is a pathology that impacts in a profound manner people all over the world. The election strategy against cancer often uses chemotherapy and radiotherapy, which more often than not can present many side effects and not always reliable efficacy. By contrast, it is widely known that a diet rich in fruit and vegetables has a protective effect against cancer insurgence and development. Polyphenols are generally believed to be responsible for those beneficial actions, at least partially. In this review, we highlight the metabolic interaction between polyphenols and our metabolism and discuss their potential for anticancer prevention and therapy.
Collapse
Affiliation(s)
- Roberto Arrigoni
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), 70124 Bari, Italy
| | - Andrea Ballini
- Department of Biosciences, Biotechnologies and Biopharmaceutics, Campus Universitario "Ernesto Quagliariello", University of Bari "Aldo Moro", 70125 Bari, Italy
| | - Luigi Santacroce
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Stefania Cantore
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Angelo Inchingolo
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Marina Di Domenico
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Lucio Quagliuolo
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Mariarosaria Boccellino
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| |
Collapse
|
14
|
Mori N, Sawada N, Ishihara J, Kotemori A, Takachi R, Murai U, Kobori M, Tsugane S. Validity of a food frequency questionnaire for the estimation of total polyphenol intake estimates and its major food sources in the Japanese population: the JPHC FFQ Validation Study. J Nutr Sci 2021; 10:e35. [PMID: 34094515 PMCID: PMC8143878 DOI: 10.1017/jns.2021.25] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 11/06/2022] Open
Abstract
We examine the validity and reproducibility of a food frequency questionnaire (FFQ) in a subsample of participants in the Japan Public Health Center-based Prospective Cohort Study using a database of polyphenol-containing foods commonly consumed in the Japanese population. Participants of the validation study were recruited from two different cohorts. In Cohort I, 215 participants completed a 28-d dietary record (DR) and the FFQ, and in Cohort II, 350 participants completed DRs and the FFQ. The total polyphenol intake estimated from the 28-d DR and FFQ were log-transformed and adjusted for energy intake by the residual method. Spearman correlation coefficients (CCs) between estimates from the FFQ and 28-d DR as well as two FFQs administered at a 1-year interval were computed. Median intakes of dietary polyphenols calculated from the DRs were 1172 mg/d for men and 1024 mg/d for women in Cohort I, and 1061 mg/d for men and 942 mg/d for women in Cohort II. The de-attenuated CCs for polyphenol intake between the DR and FFQ were 0⋅47 for men and 0⋅37 for women in Cohort I and 0⋅44 for men and 0⋅50 for women in Cohort II. Non-alcoholic beverages were the main contributor to total polyphenol intake in both men and women, accounting for 50 % of total polyphenol intake regardless of cohort and gender, followed by alcoholic beverages and seasoning and spices in men, and seasoning and spices, fruits and other vegetables in women. The present study showed that this FFQ had moderate validity and reproducibility and is suitable for use in future epidemiological studies.
Collapse
Affiliation(s)
- Nagisa Mori
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Norie Sawada
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Junko Ishihara
- School of Life and Environmental Science, Department of Food and Life Science, Azabu University, Kanagawa, Japan
| | - Ayaka Kotemori
- School of Life and Environmental Science, Department of Food and Life Science, Azabu University, Kanagawa, Japan
| | - Ribeka Takachi
- Department of Food Science and Nutrition, Faculty of Human Life and Environment, Nara Women's University, Nara, Japan
| | - Utako Murai
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Masuko Kobori
- Food Research Institute, National Agriculture and Food Research Organization, Ibaraki, Japan
| | - Shoichiro Tsugane
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| |
Collapse
|
15
|
Fernandez-Lazaro CI, Romanos-Nanclares A, Sánchez-Bayona R, Gea A, Sayon-Orea C, Martinez-Gonzalez MA, Toledo E. Dietary calcium, vitamin D, and breast cancer risk in women: findings from the SUN cohort. Eur J Nutr 2021; 60:3783-3797. [PMID: 33818633 DOI: 10.1007/s00394-021-02549-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 03/22/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE Epidemiological evidence concerning the relationship between calcium and vitamin D intake and breast cancer (BC) is inconclusive. Moreover, the association according to menopausal status remains unclear. We aimed to assess whether total intakes from dietary and supplemental sources of calcium and vitamin D were associated with the incidence of BC in a Mediterranean cohort. METHODS We prospectively evaluated the association between intakes of calcium and vitamin D and BC risk among 10,812 women in the Seguimiento Universidad de Navarra (SUN) Project, a Spanish cohort of university graduates. RESULTS During a mean follow-up of 10.7 years, 101 incident BC cases were confirmed. Evidence of a non-linear association between total calcium intake and BC risk was found (Pnon-linearity = 0.011) with risk reductions associated with higher intake up to approximately 1400 mg/day. Moderate intake [Tertile 2 (T2)] of total calcium was associated with lower overall BC risk [HR for T2 vs. Tertile 1 (T1): 0.55; 95% CI 0.33-0.91] and also among postmenopausal women (HRT2 vs. T1 = 0.38; 95% CI 0.16-0.92). Intake of vitamin D was not associated with BC risk. CONCLUSIONS Our findings suggest an L-shaped association between total calcium intake and BC incidence. Moderate calcium intake may be associated with lower BC risk among overall and postmenopausal women, but not among premenopausal women. No evidence for any association between vitamin D intake and BC was found. Adherence to current guidelines recommendations for calcium intake may help to reduce BC risk.
Collapse
Affiliation(s)
- Cesar I Fernandez-Lazaro
- Department of Preventive Medicine and Public Health, School of Medicine, University of Navarra, C/Irunlarrea, 31008, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, 31008, Pamplona, Spain
| | - Andrea Romanos-Nanclares
- Department of Preventive Medicine and Public Health, School of Medicine, University of Navarra, C/Irunlarrea, 31008, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, 31008, Pamplona, Spain
| | - Rodrigo Sánchez-Bayona
- Department of Preventive Medicine and Public Health, School of Medicine, University of Navarra, C/Irunlarrea, 31008, Pamplona, Spain.,Department of Clinical Oncology, Clínica Universidad de Navarra, 31008, Pamplona, Spain
| | - Alfredo Gea
- Department of Preventive Medicine and Public Health, School of Medicine, University of Navarra, C/Irunlarrea, 31008, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, 31008, Pamplona, Spain.,Centro de Investigación Biomédica en Red Área de Fisiología de la Obesidad y la Nutrición (CIBEROBN), 28029, Madrid, Spain
| | - Carmen Sayon-Orea
- Department of Preventive Medicine and Public Health, School of Medicine, University of Navarra, C/Irunlarrea, 31008, Pamplona, Spain.,Public Health Institute, 31003, Pamplona, Spain
| | - Miguel A Martinez-Gonzalez
- Department of Preventive Medicine and Public Health, School of Medicine, University of Navarra, C/Irunlarrea, 31008, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, 31008, Pamplona, Spain.,Centro de Investigación Biomédica en Red Área de Fisiología de la Obesidad y la Nutrición (CIBEROBN), 28029, Madrid, Spain.,Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Estefanía Toledo
- Department of Preventive Medicine and Public Health, School of Medicine, University of Navarra, C/Irunlarrea, 31008, Pamplona, Spain. .,IdiSNA, Navarra Institute for Health Research, 31008, Pamplona, Spain. .,Centro de Investigación Biomédica en Red Área de Fisiología de la Obesidad y la Nutrición (CIBEROBN), 28029, Madrid, Spain.
| |
Collapse
|
16
|
Quantitative and Qualitative Identification of Bioactive Compounds in Edible Flowers of Black and Bristly Locust and Their Antioxidant Activity. Biomolecules 2020; 10:biom10121603. [PMID: 33256210 PMCID: PMC7760478 DOI: 10.3390/biom10121603] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 11/30/2022] Open
Abstract
Black and bristly locust flowers are an excellent source of polyphenols, including flavonols, phenolic acids, and anthocyanins. In the present literature, there is a lack of studies showing the quantity and quality of phenolic compounds from different locust flowers. There are a few studies on the status of polyphenols in black locust flowers and their products but not bristly locusts. The aims of this study were to analyze and compare the concentrations of bioactive compounds from Robinia pseudoacacia and Robinia hispida flowers over two years. These two species of plants from six independent locations (parks and green areas) located in Warsaw were assessed in this study. The dry matter and polyphenol contents of the flowers were determined. Black locust flower samples contained significantly more myricetin and luteolin. Only bristly locust flowers contained anthocyanins. Five individual anthocyanins were identified in the pink-colored bristly locust flowers. Pelargonidin-3-O-glucoside and cyanidin-3-O-glucoside were the predominant forms in the pool of total anthocyanins.
Collapse
|
17
|
Vitelli-Storelli F, Zamora-Ros R, Molina AJ, Fernández-Villa T, Castelló A, Barrio JP, Amiano P, Ardanaz E, Obón-Santacana M, Gómez-Acebo I, Fernández-Tardón G, Molina-Barceló A, Alguacil J, Marcos-Gragera R, Ruiz-Moreno E, Pedraza M, Gil L, Guevara M, Castaño-Vinyals G, Dierssen-Sotos T, Kogevinas M, Aragonés N, Martín V. Association between Polyphenol Intake and Breast Cancer Risk by Menopausal and Hormone Receptor Status. Nutrients 2020; 12:nu12040994. [PMID: 32260135 PMCID: PMC7231201 DOI: 10.3390/nu12040994] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/27/2020] [Accepted: 04/02/2020] [Indexed: 12/24/2022] Open
Abstract
There is limited evidence of phenolic compounds acting as protective agents on several cancer types, including breast cancer (BC). Nevertheless, some polyphenol classes have not been investigated and there is a lack of studies assessing the effect on menopausal status and hormone receptor status as influenced by these compounds. The objective of this study is to evaluate the association between the intake of all polyphenol classes in relation to the BC risk by menopausal and hormone receptor status. We used data from a population-based multi-case-control study (MCC-Spain) including 1472 BC cases and 1577 controls from 12 different regions of Spain. The odds ratios (ORs) with 95% CI were calculated using logistic regression of mixed effects by quartiles and log2 of polyphenol intakes (adjusted for the residual method) of overall BC, menopausal and receptor status. No associations were found between total intake of polyphenols and BC risk. However, inverse associations were found between stilbenes and all BC risk (ORQ4 vs. Q1: 0.70, 95%CI: 0.56–0.89, Ptrend = 0.001), the consumption of hydroxybenzaldehydes (ORQ4 vs. Q1: 0.75, 95%CI: 0.59–0.93, Ptrend = 0.012) and hydroxycoumarins (ORQ4 vs. Q1: 0.73, 95%CI: 0.57–0.93; Ptrend = 0.005) were also inversely associated. The intake of stilbenes, hydroxybenzaldehydes and hydroxycoumarins can contribute to BC reduction risk on all menopausal and receptor statuses.
Collapse
Affiliation(s)
- Facundo Vitelli-Storelli
- Group of Investigation in Interactions Gene-Environment and Health (GIIGAS)/Institute of Biomedicine (IBIOMED), Universidad de León, 24071 León, Spain; (F.V.-S.); (A.J.M.); (T.F.-V.); (J.P.B.); (V.M.)
| | - Raul Zamora-Ros
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Programme, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet del Llobregat, 08908 Barcelona, Spain
- Correspondence: ; Tel.: +34-932607401
| | - Antonio J. Molina
- Group of Investigation in Interactions Gene-Environment and Health (GIIGAS)/Institute of Biomedicine (IBIOMED), Universidad de León, 24071 León, Spain; (F.V.-S.); (A.J.M.); (T.F.-V.); (J.P.B.); (V.M.)
| | - Tania Fernández-Villa
- Group of Investigation in Interactions Gene-Environment and Health (GIIGAS)/Institute of Biomedicine (IBIOMED), Universidad de León, 24071 León, Spain; (F.V.-S.); (A.J.M.); (T.F.-V.); (J.P.B.); (V.M.)
| | - Adela Castelló
- School of Medicine, University of Alcalá, 28871 Alcalá de Henares, Madrid, Spain;
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER Epidemiología y Salud Pública—CIBERESP), 28029 Madrid, Spain; (P.A.); (E.A.); (I.G.-A.);
(G.F.-T.); (J.A.); (R.M.-G.); (E.R.-M.); (L.G.); (M.G.); (G.C.-V.); (T.D.-S.); (M.K.); (N.A.)
| | - Juan Pablo Barrio
- Group of Investigation in Interactions Gene-Environment and Health (GIIGAS)/Institute of Biomedicine (IBIOMED), Universidad de León, 24071 León, Spain; (F.V.-S.); (A.J.M.); (T.F.-V.); (J.P.B.); (V.M.)
| | - Pilar Amiano
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER Epidemiología y Salud Pública—CIBERESP), 28029 Madrid, Spain; (P.A.); (E.A.); (I.G.-A.);
(G.F.-T.); (J.A.); (R.M.-G.); (E.R.-M.); (L.G.); (M.G.); (G.C.-V.); (T.D.-S.); (M.K.); (N.A.)
- Public Health Division of Gipuzkoa, BioDonostia Research Institute, 20014 San Sebastian, Spain
| | - Eva Ardanaz
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER Epidemiología y Salud Pública—CIBERESP), 28029 Madrid, Spain; (P.A.); (E.A.); (I.G.-A.);
(G.F.-T.); (J.A.); (R.M.-G.); (E.R.-M.); (L.G.); (M.G.); (G.C.-V.); (T.D.-S.); (M.K.); (N.A.)
- Public Health Institute of Navarra, IdiSNA, 31003 Pamplona, Spain
| | - Mireia Obón-Santacana
- Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L’Hospitalet del Llobregat, 08908 Barcelona, Spain;
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Inés Gómez-Acebo
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER Epidemiología y Salud Pública—CIBERESP), 28029 Madrid, Spain; (P.A.); (E.A.); (I.G.-A.);
(G.F.-T.); (J.A.); (R.M.-G.); (E.R.-M.); (L.G.); (M.G.); (G.C.-V.); (T.D.-S.); (M.K.); (N.A.)
| | - Guillermo Fernández-Tardón
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER Epidemiología y Salud Pública—CIBERESP), 28029 Madrid, Spain; (P.A.); (E.A.); (I.G.-A.);
(G.F.-T.); (J.A.); (R.M.-G.); (E.R.-M.); (L.G.); (M.G.); (G.C.-V.); (T.D.-S.); (M.K.); (N.A.)
- Oncology Institute, University of Oviedo, 33003 Oviedo, Spain
| | - Ana Molina-Barceló
- Cancer and Public Health Area, FISABIO—Public Health, 46035 Valencia, Spain;
| | - Juan Alguacil
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER Epidemiología y Salud Pública—CIBERESP), 28029 Madrid, Spain; (P.A.); (E.A.); (I.G.-A.);
(G.F.-T.); (J.A.); (R.M.-G.); (E.R.-M.); (L.G.); (M.G.); (G.C.-V.); (T.D.-S.); (M.K.); (N.A.)
- Centro de Investigación en Salud y Medio Ambiente (CYSMA), Universidad de Huelva, Campus Universitario de El Carmen, 21071 Huelva, Spain
| | - Rafael Marcos-Gragera
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER Epidemiología y Salud Pública—CIBERESP), 28029 Madrid, Spain; (P.A.); (E.A.); (I.G.-A.);
(G.F.-T.); (J.A.); (R.M.-G.); (E.R.-M.); (L.G.); (M.G.); (G.C.-V.); (T.D.-S.); (M.K.); (N.A.)
- Catalan Institute of Oncology, Epidemiology Unit and Girona Cancer Registry, Oncology Coordination Plan, Department of Health, Autonomous Government of Catalonia, Catalan Institute of Oncology, 17007 Girona, Spain
- Descriptive Epidemiology, Genetics and Cancer Prevention Group, Biomedical Research Institute (IDIBGI), 17090 Girona, Spain
- Research Group on Statistics, Econometrics and Health (GRECS), University of Girona, 17004 Girona, Spain
| | - Emma Ruiz-Moreno
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER Epidemiología y Salud Pública—CIBERESP), 28029 Madrid, Spain; (P.A.); (E.A.); (I.G.-A.);
(G.F.-T.); (J.A.); (R.M.-G.); (E.R.-M.); (L.G.); (M.G.); (G.C.-V.); (T.D.-S.); (M.K.); (N.A.)
- National Center for Epidemiology, Carlos III Institute of Health, 20014 San Sebastián, Spain
| | - Manuela Pedraza
- Department of Oncology, Complejo Asistencial Universitario de León, 24071 León, Spain;
| | - Leire Gil
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER Epidemiología y Salud Pública—CIBERESP), 28029 Madrid, Spain; (P.A.); (E.A.); (I.G.-A.);
(G.F.-T.); (J.A.); (R.M.-G.); (E.R.-M.); (L.G.); (M.G.); (G.C.-V.); (T.D.-S.); (M.K.); (N.A.)
- Biodonostia Health Research Institute, 20013 San Sebastian, Spain
| | - Marcela Guevara
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER Epidemiología y Salud Pública—CIBERESP), 28029 Madrid, Spain; (P.A.); (E.A.); (I.G.-A.);
(G.F.-T.); (J.A.); (R.M.-G.); (E.R.-M.); (L.G.); (M.G.); (G.C.-V.); (T.D.-S.); (M.K.); (N.A.)
- Public Health Institute of Navarra, IdiSNA, 31003 Pamplona, Spain
| | - Gemma Castaño-Vinyals
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER Epidemiología y Salud Pública—CIBERESP), 28029 Madrid, Spain; (P.A.); (E.A.); (I.G.-A.);
(G.F.-T.); (J.A.); (R.M.-G.); (E.R.-M.); (L.G.); (M.G.); (G.C.-V.); (T.D.-S.); (M.K.); (N.A.)
- ISGlobal, Barcelona, 08036 Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Campus del Mar, 08003 Barcelona, Spain
| | - Trinidad Dierssen-Sotos
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER Epidemiología y Salud Pública—CIBERESP), 28029 Madrid, Spain; (P.A.); (E.A.); (I.G.-A.);
(G.F.-T.); (J.A.); (R.M.-G.); (E.R.-M.); (L.G.); (M.G.); (G.C.-V.); (T.D.-S.); (M.K.); (N.A.)
- Universidad de Cantabria—IDIVAL, 39011 Santander, Spain
| | - Manolis Kogevinas
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER Epidemiología y Salud Pública—CIBERESP), 28029 Madrid, Spain; (P.A.); (E.A.); (I.G.-A.);
(G.F.-T.); (J.A.); (R.M.-G.); (E.R.-M.); (L.G.); (M.G.); (G.C.-V.); (T.D.-S.); (M.K.); (N.A.)
- ISGlobal, Barcelona, 08036 Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Campus del Mar, 08003 Barcelona, Spain
| | - Nuria Aragonés
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER Epidemiología y Salud Pública—CIBERESP), 28029 Madrid, Spain; (P.A.); (E.A.); (I.G.-A.);
(G.F.-T.); (J.A.); (R.M.-G.); (E.R.-M.); (L.G.); (M.G.); (G.C.-V.); (T.D.-S.); (M.K.); (N.A.)
- Epidemiology Section, Public Health Division, Department of Health of Madrid, 28035 Madrid, Spain
| | - Vicente Martín
- Group of Investigation in Interactions Gene-Environment and Health (GIIGAS)/Institute of Biomedicine (IBIOMED), Universidad de León, 24071 León, Spain; (F.V.-S.); (A.J.M.); (T.F.-V.); (J.P.B.); (V.M.)
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER Epidemiología y Salud Pública—CIBERESP), 28029 Madrid, Spain; (P.A.); (E.A.); (I.G.-A.);
(G.F.-T.); (J.A.); (R.M.-G.); (E.R.-M.); (L.G.); (M.G.); (G.C.-V.); (T.D.-S.); (M.K.); (N.A.)
| |
Collapse
|
18
|
Romanos-Nanclares A, Sánchez-Quesada C, Gardeazábal I, Martínez-González MÁ, Gea A, Toledo E. Phenolic Acid Subclasses, Individual Compounds, and Breast Cancer Risk in a Mediterranean Cohort: The SUN Project. J Acad Nutr Diet 2020; 120:1002-1015.e5. [PMID: 31982373 DOI: 10.1016/j.jand.2019.11.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 11/07/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Biological and epidemiological evidence supports an inverse association of phenolic acids with obesity-related chronic diseases. However, no previous study has prospectively evaluated the relationship between subclasses and individual compounds of phenolic acids and the risk of postmenopausal breast cancer, one of the most important and prevalent obesity-related cancer sites. OBJECTIVE This study examined associations between subclasses of phenolic acids, including hydroxycinnamic and hydroxybenzoic acids intake, and risk of breast cancer. DESIGN The Seguimiento Universidad de Navarra (SUN) Project is a dynamic, permanently open prospective cohort which started in 1999. PARTICIPANTS/SETTING Participants were 10,812 middle-aged women. All of them were university graduates. MAIN OUTCOME MEASURES Usual diet was assessed at baseline and after 10 years of follow-up with a 136-item food frequency questionnaire. Phenolic acid intake was calculated by matching food consumption with the Phenol-Explorer database on phenolic acids content of each reported food item. STATISTICAL ANALYSIS PERFORMED Participants were classified according to tertiles of subclasses or individual compounds of phenolic acids. Cox regression models were fitted to estimate multivariable-adjusted hazard ratios and 95% CIs for breast cancer incidence. RESULTS Over an average of 11.8 years of follow-up, 101 incident cases of breast cancer were confirmed. After multivariable adjustment, an inverse association between hydroxycinnamic acids intake and breast cancer was observed (hazard ratio third tertile vs first tertile 0.37, 95% CI 0.16 to 0.85; P for trend=0.029) among postmenopausal women. Specifically, chlorogenic acids (3-, 4-, and 5- caffeoylquinic acids) showed the strongest inverse association (hazard ratio third tertile vs first tertile 0.33, 95% CI 0.14 to 0.78; P for trend=0.012). CONCLUSIONS A higher intake of hydroxycinnamic acids, especially from chlorogenic acids-present in coffee, fruits, and vegetables-was associated with a lower incidence of breast cancer among postmenopausal women. Future observational studies are needed to corroborate these results.
Collapse
|
19
|
Coffee consumption and breast cancer risk in the SUN project. Eur J Nutr 2020; 59:3461-3471. [PMID: 31955220 DOI: 10.1007/s00394-020-02180-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 01/06/2020] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Breast cancer prevalence is growing worldwide. Many factors, such as diet and lifestyle could be determinants of the incidence of breast cancer. Coffee has been extensively studied in relation to several chronic diseases because of its multiple effects in health maintenance and its elevated consumption. We studied the relationship between coffee intake and breast cancer risk in the SUN (Seguimiento Universidad de Navarra) prospective cohort. MATERIALS AND METHODS We evaluated 10,812 middle-aged, Spanish female university graduates from the SUN Project, initially free of breast cancer. Coffee consumption was assessed with a 136-item validated food-frequency questionnaire (FFQ). Incident breast cancer cases were confirmed by a trained oncologist using medical records and by consultation of the National Death Index. We fitted Cox regression models to assess the relationship between baseline categories of coffee consumption and the incidence of breast cancer during follow-up. We stratified the analysis by menopausal status. RESULTS During 115,802 person-years of follow-up, 101 new cases of breast cancer were confirmed. Among postmenopausal women, more than 1 cup of coffee per day was associated with a lower incidence of breast cancer (HR 0.44; 95% confidence interval: 0.21, 0.92) in the fully adjusted model, compared to women who consumed one cup of coffee or less per day. We observed no significant differences in regard to premenopausal women. CONCLUSION Even though the number of cases was low, slight indications of an inverse association between coffee consumption and breast cancer risk among postmenopausal women were observed. Further longitudinal studies are warranted to confirm this finding.
Collapse
|
20
|
Rodríguez-García C, Sánchez-Quesada C, Gaforio JJ. Dietary Flavonoids as Cancer Chemopreventive Agents: An Updated Review of Human Studies. Antioxidants (Basel) 2019; 8:E137. [PMID: 31109072 PMCID: PMC6562590 DOI: 10.3390/antiox8050137] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/14/2019] [Accepted: 05/16/2019] [Indexed: 12/24/2022] Open
Abstract
Over the past few years, interest in health research has increased, making improved health a global goal for 2030. The purpose of such research is to ensure healthy lives and promote wellbeing across individuals of all ages. It has been shown that nutrition plays a key role in the prevention of some chronic diseases such as obesity, cardiovascular disease, diabetes, and cancer. One of the aspects that characterises a healthy diet is a high intake of vegetables and fruits, as both are flavonoid-rich foods. Flavonoids are one of the main subclasses of dietary polyphenols and possess strong antioxidant activity and anti-carcinogenic properties. Moreover, some population-based studies have described a relationship between cancer risk and dietary flavonoid intake. In this context, the goal of this review was to provide an updated evaluation of the association between the risk of different types of cancers and dietary flavonoid intake. We analysed all relevant epidemiological studies from January 2008 to March 2019 using the PUBMED and Web of Science databases. In summary, this review concludes that dietary flavonoid intake is associated with a reduced risk of different types of cancer, such as gastric, breast, prostate, and colorectal cancers.
Collapse
Affiliation(s)
- Carmen Rodríguez-García
- Center for Advanced Studies in Olive Grove and Olive Oils, University of Jaen, Campus las Lagunillas s/n, 23071 Jaén, Spain; (C.R.-G.); (C.S.-Q.)
- Department of Health Sciences, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain
| | - Cristina Sánchez-Quesada
- Center for Advanced Studies in Olive Grove and Olive Oils, University of Jaen, Campus las Lagunillas s/n, 23071 Jaén, Spain; (C.R.-G.); (C.S.-Q.)
- Department of Health Sciences, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain
- Agri-Food Campus of International Excellence (ceiA3), 14005 Córdoba, Spain
| | - José J. Gaforio
- Center for Advanced Studies in Olive Grove and Olive Oils, University of Jaen, Campus las Lagunillas s/n, 23071 Jaén, Spain; (C.R.-G.); (C.S.-Q.)
- Department of Health Sciences, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain
- Agri-Food Campus of International Excellence (ceiA3), 14005 Córdoba, Spain
- CIBER Epidemiología y Salud Pública (CIBER-ESP), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|