1
|
Naya-Català F, Belenguer A, Montero D, Torrecillas S, Soriano B, Calduch-Giner J, Llorens C, Fontanillas R, Sarih S, Zamorano MJ, Izquierdo M, Pérez-Sánchez J. Broodstock nutritional programming differentially affects the hepatic transcriptome and genome-wide DNA methylome of farmed gilthead sea bream (Sparus aurata) depending on genetic background. BMC Genomics 2023; 24:670. [PMID: 37936076 PMCID: PMC10631108 DOI: 10.1186/s12864-023-09759-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/21/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Broodstock nutritional programming improves the offspring utilization of plant-based diets in gilthead sea bream through changes in hepatic metabolism. Attention was initially focused on fatty acid desaturases, but it can involve a wide range of processes that remain largely unexplored. How all this can be driven by a different genetic background is hardly underlined, and the present study aimed to assess how broodstock nutrition affects differentially the transcriptome and genome-wide DNA methylome of reference and genetically selected fish within the PROGENSA® selection program. RESULTS After the stimulus phase with a low fish oil diet, two offspring subsets of each genetic background received a control or a FUTURE-based diet. This highlighted a different hepatic transcriptome (RNA-seq) and genome-wide DNA methylation (MBD-seq) pattern depending on the genetic background. The number of differentially expressed transcripts following the challenge phase varied from 323 in reference fish to 2,009 in genetically selected fish. The number of discriminant transcripts, and associated enriched functions, were also markedly higher in selected fish. Moreover, correlation analysis depicted a hyper-methylated and down-regulated gene expression state in selected fish with the FUTURE diet, whereas the opposite pattern appeared in reference fish. After filtering for highly represented functions in selected fish, 115 epigenetic markers were retrieved in this group. Among them, lipid metabolism genes (23) were the most reactive following ordering by fold-change in expression, rendering a final list of 10 top markers with a key role on hepatic lipogenesis and fatty acid metabolism (cd36, pitpna, cidea, fasn, g6pd, lipt1, scd1a, acsbg2, acsl14, acsbg2). CONCLUSIONS Gene expression profiles and methylation signatures were dependent on genetic background in our experimental model. Such assumption affected the magnitude, but also the type and direction of change. Thus, the resulting epigenetic clock of reference fish might depict an older phenotype with a lower methylation for the epigenetically responsive genes with a negative methylation-expression pattern. Therefore, epigenetic markers will be specific of each genetic lineage, serving the broodstock programming in our selected fish to prevent and mitigate later in life the risk of hepatic steatosis through changes in hepatic lipogenesis and fatty acid metabolism.
Collapse
Affiliation(s)
- F Naya-Català
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de La Sal (IATS, CSIC), 12595, Castellón, Spain
| | - A Belenguer
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de La Sal (IATS, CSIC), 12595, Castellón, Spain
| | - D Montero
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Ctra. Taliarte S/N, 35214, Telde, Las Palmas, Canary Islands, Spain
| | - S Torrecillas
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Ctra. Taliarte S/N, 35214, Telde, Las Palmas, Canary Islands, Spain
| | - B Soriano
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de La Sal (IATS, CSIC), 12595, Castellón, Spain
- Biotechvana, Parc Científic Universitat de València, 46980, Paterna, Spain
| | - J Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de La Sal (IATS, CSIC), 12595, Castellón, Spain
| | - C Llorens
- Biotechvana, Parc Científic Universitat de València, 46980, Paterna, Spain
| | - R Fontanillas
- Skretting Aquaculture Research Centre, Stavanger, Norway
| | - S Sarih
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Ctra. Taliarte S/N, 35214, Telde, Las Palmas, Canary Islands, Spain
| | - M J Zamorano
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Ctra. Taliarte S/N, 35214, Telde, Las Palmas, Canary Islands, Spain
| | - M Izquierdo
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Ctra. Taliarte S/N, 35214, Telde, Las Palmas, Canary Islands, Spain
| | - J Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de La Sal (IATS, CSIC), 12595, Castellón, Spain.
| |
Collapse
|
2
|
Hou Z, Lu X, Tiziani S, Fuiman LA. Nutritional programming by maternal diet alters offspring lipid metabolism in a marine teleost. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:535-553. [PMID: 35399145 DOI: 10.1007/s10695-022-01069-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Nutritional programming - the association between the early nutritional environment and long-term consequences for an animal - is an emerging area of research in fish biology. Previous studies reported correlations between maternal provisioning of essential fatty acids to eggs and the whole-body fatty acid composition of larvae reared under uniform conditions for red drum, Sciaenops ocellatus. This study aimed to further investigate the nutritional stimulus and the consequences of nutritional programming by feeding adult red drum several distinct diets and rearing larvae under uniform conditions until 21 days post-hatching when larval lipid and fatty acid compositions were assessed. Different maternal diets produced eggs with distinctive lipid and fatty acid compositions, and despite receiving the same larval diet for almost 3 weeks, larvae showed differences in total fatty acid accumulation and in retention of highly unsaturated fatty acids (HUFA). Specifically, larvae reared from a maternal diet of shrimp generally showed elevated levels of fatty acids in the initial steps of the n-3 and n-6 HUFA biosynthetic pathways and reduced levels of fatty acid products of the same pathways, especially in triglyceride. Furthermore, the variations in larval fatty acid accumulation induced by maternal diet varied among females. Lipid metabolism altered by parental diet may have consequences for larval physiological processes and behavioral performance, which may ultimately influence larval survival.
Collapse
Affiliation(s)
- Zhenxin Hou
- The University of Texas Marine Science Institute, 750 Channel View Drive, Port Aransas, TX, 78373, USA.
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| | - Xiyuan Lu
- Department of Nutritional Sciences and Dell Pediatric Research Institute, The University of Texas at Austin, 1400 Barbara Jordan Blvd., Austin, TX, 78723, USA
| | - Stefano Tiziani
- Department of Nutritional Sciences and Dell Pediatric Research Institute, The University of Texas at Austin, 1400 Barbara Jordan Blvd., Austin, TX, 78723, USA
- Department of Pediatrics and Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Lee A Fuiman
- The University of Texas Marine Science Institute, 750 Channel View Drive, Port Aransas, TX, 78373, USA
| |
Collapse
|
3
|
Zarantoniello M, Randazzo B, Cardinaletti G, Truzzi C, Chemello G, Riolo P, Olivotto I. Possible Dietary Effects of Insect-Based Diets across Zebrafish ( Danio rerio) Generations: A Multidisciplinary Study on the Larval Phase. Animals (Basel) 2021; 11:ani11030751. [PMID: 33803315 PMCID: PMC8000180 DOI: 10.3390/ani11030751] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 02/07/2023] Open
Abstract
Insects represent a valuable and sustainable alternative ingredient for aquafeed formulation. However, insect-based diets have often highlighted controversial results in different fish species, especially when high inclusion levels were used. Several studies have demonstrated that nutritional programming through parental feeding may allow the production of fish better adapted to use sub-optimal aquafeed ingredients. To date, this approach has never been explored on insect-based diets. In the present study, five experimental diets characterized by increasing fish meal substitution levels with full-fat Black Soldier Fly (Hermetia illucens; BSF) prepupae meal (0%, 25%, 50%, 75% and 100%) were used to investigate the effects of programming via broodstock nutrition on F1 zebrafish larvae development. The responses of offspring were assayed through biometric, gas chromatographic, histological, and molecular analyses. The results evidenced that the same BSF-based diets provided to adults were able to affect F1 zebrafish larvae fatty acid composition without impairing growth performances, hepatic lipid accumulation and gut health. Groups challenged with higher BSF inclusion with respect to fish meal (50%, 75% and 100%) showed a significant downregulation of stress response markers and a positive modulation of inflammatory cytokines gene expression. The present study evidences that nutritional programming through parental feeding may make it possible to extend the fish meal substitution level with BSF prepupae meal in the diet up to almost 100% without incurring the well-known negative side effects of BSF-based diets.
Collapse
Affiliation(s)
- Matteo Zarantoniello
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy; (M.Z.); (B.R.); (C.T.); (G.C.)
| | - Basilio Randazzo
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy; (M.Z.); (B.R.); (C.T.); (G.C.)
| | - Gloriana Cardinaletti
- Dipartimento di Scienze Agro-Alimentari, Ambientali e Animali (Di4A), Università di Udine, via Sondrio 2/A, 33100 Udine, Italy;
| | - Cristina Truzzi
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy; (M.Z.); (B.R.); (C.T.); (G.C.)
| | - Giulia Chemello
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy; (M.Z.); (B.R.); (C.T.); (G.C.)
| | - Paola Riolo
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy;
| | - Ike Olivotto
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy; (M.Z.); (B.R.); (C.T.); (G.C.)
- Correspondence:
| |
Collapse
|
4
|
Chae M, Park K. Association between dietary omega-3 fatty acid intake and depression in postmenopausal women. Nutr Res Pract 2021; 15:468-478. [PMID: 34349880 PMCID: PMC8313386 DOI: 10.4162/nrp.2021.15.4.468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/14/2021] [Accepted: 02/16/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND/OBJECTIVES This study aimed to analyze the association between dietary omega-3 fatty acid intake and depression in postmenopausal women using data from the Korea National Health and Nutrition Examination Survey (KNHANES) VI. SUBJECTS/METHODS The KNHANES is a cross-sectional nationwide health and nutrition survey. Dietary data, including omega-3 fatty acids, were assessed using the 24-h recall method. Depression was evaluated using a survey questionnaire. The association between dietary omega-3 fatty acids and depression was evaluated using multivariate logistic regression analysis. Depression, according to the dietary omega-3 fatty acid intake, was expressed as the odds ratio (OR) with a 95% confidence interval (CI). A total of 4,150 postmenopausal women were included in the analysis. RESULTS In the fully-adjusted model, the group with the highest dietary omega-3 fatty acid intake significantly showed lower prevalence of depression than the group with the lowest intake (OR, 0.52; 95% CI, 0.33-0.83); a significant linear trend was detected (P for trend = 0.04). According to the dose-response analysis using cubic restricted spline regression, this association was linear and monotonic (P for non-linearity = 0.32). CONCLUSIONS In this study, the dietary omega-3 fatty acid intake in postmenopausal women was inversely proportional to depression in a dose-response manner. Large cohort studies are needed to verify the causality between omega-3 fatty acids and depression in Korean postmenopausal women.
Collapse
Affiliation(s)
- Minjeong Chae
- Department of Food and Nutrition, Yeungnam University, Gyeongsan 38541, Korea
| | - Kyong Park
- Department of Food and Nutrition, Yeungnam University, Gyeongsan 38541, Korea
| |
Collapse
|
5
|
Ferosekhan S, Turkmen S, Pérez-García C, Xu H, Gómez A, Shamna N, Afonso JM, Rosenlund G, Fontanillas R, Gracia A, Izquierdo M, Kaushik S. Influence of Genetic Selection for Growth and Broodstock Diet n-3 LC-PUFA Levels on Reproductive Performance of Gilthead Seabream, Sparus aurata. Animals (Basel) 2021; 11:ani11020519. [PMID: 33671379 PMCID: PMC7922623 DOI: 10.3390/ani11020519] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/11/2021] [Accepted: 02/13/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Gilthead seabream (GSB) broodstock were genetically selected based on their growth trait either high growth (HG) or low growth (LG) to evaluate the reproductive performance of these both traits under either fish oil (FO) or vegetable oil (VO) based diets feeding regime. The egg and larval quality were significantly improved by the broodstock selected for HG trait fed under FO based diet. This indicates that broodstock selected with HG trait has positive influence on the improving sperm, egg and larval quality in gilthead seabream. Abstract Genetic selection in gilthead seabream (GSB), Sparus aurata, has been undertaken to improve the growth, feed efficiency, fillet quality, skeletal deformities and disease resistance, but no study is available to delineate the effect of genetic selection for growth trait on GSB reproductive performance under mass spawning condition. In this study, high growth (HG) or low growth (LG) GSB broodstock were selected to evaluate the sex steroid hormones, sperm, egg quality and reproductive performance under different feeding regime of commercial diet or experimental broodstock diet containing either fish oil (FO) or vegetable oil (VO) based diet. Under commercial diet feeding phase, broodstock selected for either high growth or low growth did not show any significant changes in the egg production per kg female whereas egg viability percentage was positively (p = 0.014) improved by the high growth trait broodstock group. The experimental diet feeding results revealed that both growth trait and dietary fatty acid composition influenced the reproductive performance of GSB broodstock. In the experimental diet feeding phase, we observed high growth trait GSB males produced a higher number of sperm cells (p < 0.001) and also showed a higher sperm motility (p = 0.048) percentage. The viable egg and larval production per spawn per kg female were significantly improved by the broodstock selected for high growth trait and fed with fish oil-based diet. This present study results signifies that gilthead seabream broodstock selected on growth trait could have positive role in improvement of sperm and egg quality to produce viable progeny.
Collapse
Affiliation(s)
- Shajahan Ferosekhan
- IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Taliarte, 35214 Telde, Spain; (S.T.); (C.P.-G.); (H.X.); (J.M.A.); (A.G.); (M.I.); (S.K.)
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar 751002, Odisha, India
- Correspondence:
| | - Serhat Turkmen
- IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Taliarte, 35214 Telde, Spain; (S.T.); (C.P.-G.); (H.X.); (J.M.A.); (A.G.); (M.I.); (S.K.)
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Cathaysa Pérez-García
- IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Taliarte, 35214 Telde, Spain; (S.T.); (C.P.-G.); (H.X.); (J.M.A.); (A.G.); (M.I.); (S.K.)
| | - Hanlin Xu
- IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Taliarte, 35214 Telde, Spain; (S.T.); (C.P.-G.); (H.X.); (J.M.A.); (A.G.); (M.I.); (S.K.)
| | - Ana Gómez
- Institute of Aquaculture Torre de la Sal (IATS), CSIC, Ribera de Cabanes, 12595 Castellón, Spain;
| | - Nazeemashahul Shamna
- ICAR-Central Institute of Fisheries Education, Mumbai 400061, Maharashtra, India;
| | - Juan Manuel Afonso
- IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Taliarte, 35214 Telde, Spain; (S.T.); (C.P.-G.); (H.X.); (J.M.A.); (A.G.); (M.I.); (S.K.)
| | - Grethe Rosenlund
- Skretting Aquaculture Research Centre, Sjohagen, 4016 Stavanger, Norway; (G.R.); (R.F.)
| | - Ramón Fontanillas
- Skretting Aquaculture Research Centre, Sjohagen, 4016 Stavanger, Norway; (G.R.); (R.F.)
| | - Anselmo Gracia
- IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Taliarte, 35214 Telde, Spain; (S.T.); (C.P.-G.); (H.X.); (J.M.A.); (A.G.); (M.I.); (S.K.)
| | - Marisol Izquierdo
- IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Taliarte, 35214 Telde, Spain; (S.T.); (C.P.-G.); (H.X.); (J.M.A.); (A.G.); (M.I.); (S.K.)
| | - Sadasivam Kaushik
- IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Taliarte, 35214 Telde, Spain; (S.T.); (C.P.-G.); (H.X.); (J.M.A.); (A.G.); (M.I.); (S.K.)
| |
Collapse
|
6
|
Turkmen S, Zamorano MJ, Xu H, Fernández-Palacios H, Robaina L, Kaushik S, Izquierdo M. Parental LC-PUFA biosynthesis capacity and nutritional intervention with alpha-linolenic acid affect performance of Sparus aurata progeny. ACTA ACUST UNITED AC 2020; 223:jeb.214999. [PMID: 33077642 DOI: 10.1242/jeb.214999] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 10/09/2020] [Indexed: 12/13/2022]
Abstract
Environmental factors such as nutritional interventions during early developmental stages affect and establish long-term metabolic changes in all animals. Diet during the spawning period has a nutritional programming effect in offspring of gilthead seabream and affects long-term metabolism. Studies showed modulation of genes such as fads2, which is considered to be a rate-limiting step in the synthesis of n-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA). However, it is still unknown whether this adaptation is related to the presence of precursors or to limitations in the pre-formed products, n-3 LC-PUFA, contained in the diets used during nutritional programming. This study investigated the combined effects of nutritional programming on Sparus aurata through broodstock diets during the spawning period and in broodfish showing higher or lower fads2 expression levels in the blood after 1 month of feeding with a diet containing high levels of plant protein sources and vegetable oils (VM/VO). Broodfish showing high fads2 expression had a noticeable improvement in spawning quality parameters as well as in the growth of 6 month old offspring when challenged with a high VM/VO diet. Further, nutritional conditioning with 18:3n-3-rich diets had an adverse effect in comparison to progeny obtained from fish fed high fish meal and fish oil (FM/FO) diets, with a reduction in growth of juveniles. Improved growth of progeny from the high fads2 broodstock combined with similar muscle fatty acid profiles is also an excellent option for tailoring and increasing the flesh n-3 LC-PUFA levels to meet the recommended dietary allowances for human consumption.
Collapse
Affiliation(s)
- Serhat Turkmen
- Aquaculture Research Group (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Spain .,Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Maria J Zamorano
- Aquaculture Research Group (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Spain
| | - Hanlin Xu
- Aquaculture Research Group (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Spain
| | - Hipólito Fernández-Palacios
- Aquaculture Research Group (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Spain
| | - Lidia Robaina
- Aquaculture Research Group (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Spain
| | - Sadasivam Kaushik
- Aquaculture Research Group (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Spain
| | - Marisol Izquierdo
- Aquaculture Research Group (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Spain
| |
Collapse
|
7
|
Influence of Parental Fatty Acid Desaturase 2 ( fads2) Expression and Diet on Gilthead Seabream ( Sparus aurata) Offspring fads2 Expression during Ontogenesis. Animals (Basel) 2020; 10:ani10112191. [PMID: 33238560 PMCID: PMC7700513 DOI: 10.3390/ani10112191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/14/2020] [Accepted: 11/19/2020] [Indexed: 12/28/2022] Open
Abstract
Simple Summary The present study was on the gene expression of a rate-limiting enzyme in long chain polyunsaturated fatty acids (LC-PUFAs), fatty acyl desaturase 2 (fads2), throughout the embryonic development of a gilthead sea bream. The results showed a maternal transfer of fads2 mRNA to the developing oocyte. The embryonic fads2 expression might start after the neurula stage. No effect was found in fads2 expression in developing eggs from broodstock fed with a diet rich in rapeseed oil or fish oil. The present study provides information on the change of LC-PUFA biosynthesis during embryogenesis. Abstract Previous studies have shown that it is possible to increase the ability of marine fish to produce long-chain polyunsaturated fatty acid from their 18C precursors by nutritional programming or using broodstock with a higher fatty acyl desaturase 2 (fads2) expression. However, those studies failed to show the effect of these interventions on the expression of the fads2 gene in the developing egg. Moreover, there were no studies on the temporal expression of the fads2 during ontogeny in the gilthead sea bream (Sparus aurata). In order to determine the changes in expression of fads2 during ontogeny, gilthead sea bream broodstock with a high (HRO) or low (LRO) fads2 expression fed a diet previously used for nutritional programming, or a fish oil-based diet (LFO) were allowed to spawn. The samples were taken at the stages of spawning, morula, high blastula, gastrula, neurula, heart beating, hatch and 3 day-old first exogenous feeding larvae to determine fads2 expression throughout embryonic development. The results showed the presence of fads2 mRNA in the just spawned egg, denoting the maternal mRNA transfer to the developing oocyte. Later, fads2 expression increased after the neurula, from heart beating until 3-day-old larvae, denoting the transition from maternal to embryonic gene expression. In addition, the eggs obtained from broodstock with high fads2 expression showed a high docosahexaenoic acid content, which correlated with the downregulation of the fads2 expression found in the developing embryo and larvae. Finally, feeding with the nutritional programming diet with the partial replacement of fish oil by rapeseed oil did not affect the long chain polyunsaturated fatty acid (LC-PUFA) contents nor fads2 expression in the gilthead sea bream developing eggs.
Collapse
|
8
|
Ferosekhan S, Xu H, Turkmen S, Gómez A, Afonso JM, Fontanillas R, Rosenlund G, Kaushik S, Izquierdo M. Reproductive performance of gilthead seabream (Sparus aurata) broodstock showing different expression of fatty acyl desaturase 2 and fed two dietary fatty acid profiles. Sci Rep 2020; 10:15547. [PMID: 32968090 PMCID: PMC7512018 DOI: 10.1038/s41598-020-72166-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 08/24/2020] [Indexed: 12/20/2022] Open
Abstract
Previous studies have shown that it is possible to nutritionally program gilthead seabream offspring through fish oil (FO) replacement by vegetable oils (VO) in the broodstock diet, to improve their ability to grow fast when fed low fish meal (FM) and FO diets during grow-out phase. However, in those studies broodstock performance was reduced by the VO contained diet. Therefore, the present study aimed to determine if it is possible to replace FO by a mixture of FO and rapeseed oil (RO) with a specific fatty acid profile in broodstock diets, without altering gilthead seabream broodstock reproductive performance. Besides, the study also aimed to evaluate the reproductive performance of broodstock with different expression of fatty acid desaturase 2 gene (fads2) a key enzyme in synthesis of long chain polyunsaturated fatty acids. For that purpose, broodfish having either a high (HD) or low (LD) expression of fads2 were fed for three months during the spawning season with two diets containing different fatty acid profiles and their effects on reproductive hormones, fecundity, sperm and egg quality, egg biochemical composition and fads2 expression were studied. The results showed that blood fads2 expression in females, which tended to be higher than in males, was positively related to plasma 17β-estradiol levels. Moreover, broodstock with high blood fads2 expression showed a better reproductive performance, in terms of fecundity and sperm and egg quality, which was correlated with female fads2 expression. Our data also showed that it is feasible to reduce ARA, EPA and DHA down to 0.43, 6.6 and 8.4% total fatty acids, respectively, in broodstock diets designed to induce nutritional programming effects in the offspring without adverse effects on spawning quality. Further studies are being conducted to test the offspring with low FM and FO diets along life span.
Collapse
Affiliation(s)
- Shajahan Ferosekhan
- Aquaculture Research Group (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Las Palmas, Canary Islands, Spain. .,ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India.
| | - Hanlin Xu
- Aquaculture Research Group (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Las Palmas, Canary Islands, Spain
| | - Serhat Turkmen
- Aquaculture Research Group (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Las Palmas, Canary Islands, Spain.,Department of Biology, University of Alabama at Birmingham, Birmingham, USA
| | - Ana Gómez
- Institute of Aquaculture Torre de La Sal (IATS), CSIC, Ribera de Cabanes, Castellón, Spain
| | - Juan Manuel Afonso
- Aquaculture Research Group (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Las Palmas, Canary Islands, Spain
| | | | | | - Sadasivam Kaushik
- Aquaculture Research Group (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Las Palmas, Canary Islands, Spain
| | - Marisol Izquierdo
- Aquaculture Research Group (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Las Palmas, Canary Islands, Spain
| |
Collapse
|
9
|
Ferosekhan S, Turkmen S, Xu H, Afonso JM, Zamorano MJ, Kaushik S, Izquierdo M. The Relationship between the Expression of Fatty Acyl Desaturase 2 ( fads2) Gene in Peripheral Blood Cells (PBCs) and Liver in Gilthead Seabream, Sparus aurata Broodstock Fed a Low n-3 LC-PUFA Diet. Life (Basel) 2020; 10:life10070117. [PMID: 32707702 PMCID: PMC7400341 DOI: 10.3390/life10070117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/10/2020] [Accepted: 07/17/2020] [Indexed: 12/22/2022] Open
Abstract
The principle aim of this study is to elucidate the relationship between the fatty acid desaturase 2 gene (fads2) expression pattern in peripheral blood cells (PBCs) and liver of gilthead seabream (GSB), Sparus aurata broodstock in order to determine the possible use of fads2 expression as a potential biomarker for the selection of broodstock. This selection could be utilized for breeding programs aiming to improve reproduction, health, and nutritional status. Passive Integrated Transponder (PIT)-tagged GSB broodstock (Male-1.22 ± 0.20 kg; 44.8 ± 2 cm and female-2.36 ± 0.64 kg; 55.1 cm) were fed a diet containing low levels of fish meal and fish oil (EPA 2.5; DHA 1.7 and n-3 LC-PUFA 4.6% TFA) for one month. After the feeding period, fads2 expression in PBCs and liver of both male and female broodstock were highly significantly correlated (r = 0.89; p < 0.001). Additionally, in male broodstock, liver fads2 expression was significantly correlated (p < 0.05) to liver contents in 16:0 (r = 0.95; p = 0.04) and total saturates (r = 0.97; p = 0.03) as well as to 20:3n–6/20:2n–6 (r = 0.98; p = 0.02) a Fads2 product/precursor ratio. Overall, we found a positive and significant correlation between fads2 expression levels in the PBCs and liver of GSB broodstock. PBCs fads2 expression levels indicate a strong potential for utilization as a non-invasive method to select animals having increased fatty acid bioconversion capability, better able to deal with diets free of fish meal and fish oil.
Collapse
Affiliation(s)
- Shajahan Ferosekhan
- Aquaculture Research Group (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, 35214 Telde, Spain; (S.T.); (H.X.); (J.M.A.); (M.J.Z.); (S.K.); (M.I.)
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar 751002, India
- Correspondence:
| | - Serhat Turkmen
- Aquaculture Research Group (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, 35214 Telde, Spain; (S.T.); (H.X.); (J.M.A.); (M.J.Z.); (S.K.); (M.I.)
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Hanlin Xu
- Aquaculture Research Group (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, 35214 Telde, Spain; (S.T.); (H.X.); (J.M.A.); (M.J.Z.); (S.K.); (M.I.)
| | - Juan Manuel Afonso
- Aquaculture Research Group (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, 35214 Telde, Spain; (S.T.); (H.X.); (J.M.A.); (M.J.Z.); (S.K.); (M.I.)
| | - Maria Jesus Zamorano
- Aquaculture Research Group (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, 35214 Telde, Spain; (S.T.); (H.X.); (J.M.A.); (M.J.Z.); (S.K.); (M.I.)
| | - Sadasivam Kaushik
- Aquaculture Research Group (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, 35214 Telde, Spain; (S.T.); (H.X.); (J.M.A.); (M.J.Z.); (S.K.); (M.I.)
| | - Marisol Izquierdo
- Aquaculture Research Group (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, 35214 Telde, Spain; (S.T.); (H.X.); (J.M.A.); (M.J.Z.); (S.K.); (M.I.)
| |
Collapse
|
10
|
Luo R, Zheng Z, Yang C, Zhang X, Cheng L, Su G, Bai C, Li G. Comparative Transcriptome Analysis Provides Insights into the Polyunsaturated Fatty Acid Synthesis Regulation of Fat-1 Transgenic Sheep. Int J Mol Sci 2020; 21:ijms21031121. [PMID: 32046209 PMCID: PMC7038019 DOI: 10.3390/ijms21031121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/30/2020] [Accepted: 02/04/2020] [Indexed: 11/16/2022] Open
Abstract
Transgenic technology has huge application potential in agriculture and medical fields, such as producing new livestock varieties with new valuable features and xenotransplantation. However, how an exogenous gene affects the host animal’s gene regulation networks and their health status is still poorly understood. In the current study, Fat-1 transgenic sheep were generated, and the tissues from 100-day abnormal (DAF_1) and normal (DAF_2) fetuses, postnatal lambs (DAF_4), transgenic-silencing (DAFG5), and -expressing (DAFG6) skin cells were collected and subjected to transcriptome sequencing, and their gene expression profiles were compared in multiple dimensions. The results were as follows. For DAF_1, its abnormal development was caused by pathogen invasion but not the introduction of the Fat-1 gene. Fat-1 expression down-regulated the genes related to the cell cycle; the NF-κB signaling pathway and the PI3K/Akt signaling pathway were down-regulated, and the PUFAs (polyunsaturated fatty acids) biosynthesis pathway was shifted toward the biosynthesis of high-level n-3 LC-PUFAs (long-chain PUFAs). Four key node genes, FADS2, PPARA, PRKACA, and ACACA, were found to be responsible for the gene expression profile shift from the Fat-1 transgenic 100-day fetus to postnatal lamb, and FADS2 may play a key role in the accumulation of n-3 LC-PUFAs in Fat-1 transgenic sheep muscle. Our study provides new insights into the FUFAs synthesis regulation in Fat-1 transgenic animals.
Collapse
Affiliation(s)
- Rongsong Luo
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (R.L.); (Z.Z.); (X.Z.); (L.C.); (G.S.); (G.L.)
| | - Zhong Zheng
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (R.L.); (Z.Z.); (X.Z.); (L.C.); (G.S.); (G.L.)
| | - Chunrong Yang
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China;
| | - Xiaoran Zhang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (R.L.); (Z.Z.); (X.Z.); (L.C.); (G.S.); (G.L.)
| | - Lei Cheng
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (R.L.); (Z.Z.); (X.Z.); (L.C.); (G.S.); (G.L.)
- College of Innovation Technology, Inner Mongolia University, Hohhot 010070, China
| | - Guanghua Su
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (R.L.); (Z.Z.); (X.Z.); (L.C.); (G.S.); (G.L.)
| | - Chunling Bai
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (R.L.); (Z.Z.); (X.Z.); (L.C.); (G.S.); (G.L.)
- Correspondence: ; Tel.: +86-0471-5298-583
| | - Guangpeng Li
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (R.L.); (Z.Z.); (X.Z.); (L.C.); (G.S.); (G.L.)
| |
Collapse
|
11
|
Turkmen S, Perera E, Zamorano MJ, Simó-Mirabet P, Xu H, Pérez-Sánchez J, Izquierdo M. Effects of Dietary Lipid Composition and Fatty Acid Desaturase 2 Expression in Broodstock Gilthead Sea Bream on Lipid Metabolism-Related Genes and Methylation of the fads2 Gene Promoter in Their Offspring. Int J Mol Sci 2019; 20:ijms20246250. [PMID: 31835772 PMCID: PMC6940931 DOI: 10.3390/ijms20246250] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/03/2019] [Accepted: 12/09/2019] [Indexed: 01/08/2023] Open
Abstract
Polyunsaturated fatty acids (PUFA) in parental diets play a key role in regulating n-3 LC-PUFA metabolism of the offspring. However, it is not clear whether this metabolic regulation is driven by the precursors presented in the diet or by the parental ability to synthesize them. To elucidate this, broodstocks of gilthead sea bream with different blood expression levels of fads2, which encodes for the rate-limiting enzyme in the n-3 LC-PUFA synthesis pathway, were fed either a diet supplemented with alpha-linolenic acid (ALA, 18:3n-3) or a control diet. The progenies obtained from these four experimental groups were then challenged with a low LC-PUFA diet at the juvenile stage. Results showed that the offspring from parents with high fads2 expression presented higher growth and improved utilization of low n-3 LC-PUFA diets compared to the offspring from parents with low fads2 expression. Besides, an ALA-rich diet during the gametogenesis caused negative effects on the growth of the offspring. The epigenetic analysis demonstrated that methylation in the promoter of fads2 of the offspring was correlated with the parental fads2 expression levels and type of the broodstock diet.
Collapse
Affiliation(s)
- Serhat Turkmen
- Aquaculture Research Group (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Spain; (M.J.Z.); (H.X.); (M.I.)
- Department of Biology, University of Alabama at Birmingham, 35294, Birmingham, AL 35294, USA
- Correspondence: ; Tel.: +1-(205)-212-01-04
| | - Erick Perera
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal, IATS-CSIC, Ribera de Cabanes s/n, 12595 Castellón, Spain; (E.P.); (P.S.-M.); (J.P.-S.)
| | - Maria J. Zamorano
- Aquaculture Research Group (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Spain; (M.J.Z.); (H.X.); (M.I.)
| | - Paula Simó-Mirabet
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal, IATS-CSIC, Ribera de Cabanes s/n, 12595 Castellón, Spain; (E.P.); (P.S.-M.); (J.P.-S.)
| | - Hanlin Xu
- Aquaculture Research Group (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Spain; (M.J.Z.); (H.X.); (M.I.)
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal, IATS-CSIC, Ribera de Cabanes s/n, 12595 Castellón, Spain; (E.P.); (P.S.-M.); (J.P.-S.)
| | - Marisol Izquierdo
- Aquaculture Research Group (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Spain; (M.J.Z.); (H.X.); (M.I.)
| |
Collapse
|
12
|
Perera E, Turkmen S, Simó-Mirabet P, Zamorano MJ, Xu H, Naya-Català F, Izquierdo M, Pérez-Sánchez J. Stearoyl-CoA desaturase ( scd1a) is epigenetically regulated by broodstock nutrition in gilthead sea bream ( Sparus aurata). Epigenetics 2019; 15:536-553. [PMID: 31790638 DOI: 10.1080/15592294.2019.1699982] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The aim of this study was to generate new knowledge on fish epigenetics, assessing the effects of linolenic acid (ALA) conditioning of broodstock in the offspring of the marine fish Sparus aurata. Attention was focused on gene organization, methylation signatures and gene expression patterns of fatty acid desaturase 2 (fads2) and stearoyl-CoA desaturase 1a (scd1a). Blat searches in the genomic IATS-CSIC database (www.nutrigroup-iats.org/seabreamdb) highlighted a conserved exon-intron organization, a conserved PUFA response region, and CG islands at the promoter regions of each gene. The analysed CpG positions in the fads2 promoter were mostly hypomethylated and refractory to broodstock nutrition. The same response was achieved after conditioning of juvenile fish to low water oxygen concentrations, thus methylation susceptibility at individual CpG sites seems to be stringently regulated in fish of different origin and growth trajectories. Conversely, the scd1a promoter was responsive to broodstock nutrition and the offspring of parents fed the ALA-rich diet shared an increased DNA-methylation, mainly in CpG sites neighbouring SP1 and HNF4α binding sites. Cytosine methylation at these sites correlated inversely with the hepatic scd1a expression of the offspring. Co-expression analyses supported that the HNF4α-dependent regulation of scd1a is affected by DNA methylation. The phenotypic output is a regulated liver fat deposition through changes in scd1 expression, which would also allow the preservation of fatty acid unsaturation levels in fish fed reduced levels of n-3 LC-PUFA. Collectively, these findings reveal a reliable mechanism by which parent's nutrition can shape scd1a gene expression in the fish offspring.
Collapse
Affiliation(s)
- Erick Perera
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal, IATS-CSIC, Castellón, Spain
| | - Serhat Turkmen
- Aquaculture Research Group (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria (ULPGC), Telde, Spain
| | - Paula Simó-Mirabet
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal, IATS-CSIC, Castellón, Spain
| | - Maria J Zamorano
- Aquaculture Research Group (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria (ULPGC), Telde, Spain
| | - Hanlin Xu
- Aquaculture Research Group (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria (ULPGC), Telde, Spain
| | - Fernando Naya-Català
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal, IATS-CSIC, Castellón, Spain
| | - Marisol Izquierdo
- Aquaculture Research Group (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria (ULPGC), Telde, Spain
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal, IATS-CSIC, Castellón, Spain
| |
Collapse
|