1
|
Hamed S, El-Kassas S, Abo-Al-Ela HG, Abdo SE, Al Wakeel RA, Abou-Ismail UA, Mohamed RA. Interactive effects of water temperature and dietary protein on Nile tilapia: growth, immunity, and physiological health. BMC Vet Res 2024; 20:349. [PMID: 39113047 PMCID: PMC11304609 DOI: 10.1186/s12917-024-04198-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/17/2024] [Indexed: 08/11/2024] Open
Abstract
Optimizing fish performance depends on several factors, with dietary protein levels and rearing temperature playing important roles. In this study, Nile tilapia fingerlings (Oreochromis niloticus) weighing an average of 20.00 ± 1.26 g were divided into nine groups (in three replicates). Each group was subjected to different water temperatures (26 °C, 28 °C, and 30 °C) and received one of three dietary protein levels (20%, 25%, and 30%) for two months. Our findings indicate that higher temperatures, particularly at 30 °C, increased water electrical conductivity and total dissolved salts, especially noticeable in fish fed 25% or 30% crude protein (CP). Lower total ammonia nitrogen levels were observed at 28 °C with 25% CP, 30 °C with 30% CP, and 26 °C with 30% CP. Hepatic growth hormone receptor 1 and insulin-like growth factor 1 expression gradually rose with higher dietary CP percentages in fish at 26 °C but declined in those at 30 °C, albeit remaining higher than in the 28 °C groups with 25% CP. Fish at 28 °C showed the best final body weights and growth performance when fed 20% or 25% CP, with no significant difference between these groups. Hepatic leptin expression did not differ significantly among groups, but hepatic fatty acid binding protein expression notably increased in fish fed 30% CP at both 26 °C and 30 °C compared to those at 28 °C with 25% CP. Within the same temperature group, fish fed 30% CP exhibited higher globulin levels, particularly thriving at 28 °C or 30 °C. Hepatic mucin-like protein expression significantly increased across all groups, especially in fish at 30 °C with 30% CP compared to those at 28 °C with 25% CP. Hepatic lysozyme expression also increased notably in fish at 30 °C with 30% CP. Notable changes in superoxide dismutase, catalase, and glutathione peroxidase expression were observed, with the highest serum superoxide dismutase and catalase activities recorded in fish at 30 °C with 25% CP. Overall, dietary protein levels of 25% and 30%, combined with temperatures of 28 °C and 30 °C, yielded favorable outcomes, particularly favoring 28 °C with 25% protein.
Collapse
Affiliation(s)
- Sara Hamed
- Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Seham El-Kassas
- Department of Animal Wealth Development, Animal, Poultry and Fish Breeding and Production, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt.
| | - Haitham G Abo-Al-Ela
- Department of Aquaculture, Genetics and Biotechnology, Faculty of Fish Resources, Suez University, Suez, 43221, Egypt.
- Department of Animal Husbandry and Animal Wealth Development, Genetics and Genetic Engineering, Faculty of Veterinary Medicine, Menoufia University, Shebin El-Kom, Menoufia, 32511, Egypt.
| | - Safaa E Abdo
- Department of Animal Wealth Development, Genetics and Genetic Engineering, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt
| | - Rasha A Al Wakeel
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Usama A Abou-Ismail
- Department of Husbandry and Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Gomhoria St, P.O. Box 35516, Mansoura, Egypt
| | - Radi A Mohamed
- Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| |
Collapse
|
2
|
Zillinger LS, Hustedt K, Schnepel N, Hirche F, Schmicke M, Stangl GI, Muscher-Banse AS. Effects of dietary nitrogen and/or phosphorus reduction on mineral homeostasis and regulatory mechanisms in young goats. Front Vet Sci 2024; 11:1375329. [PMID: 38799725 PMCID: PMC11117143 DOI: 10.3389/fvets.2024.1375329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/01/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction The reduction of nitrogen (N) and phosphorus (P) in ruminant feed is desirable due to costs and negative environmental impact. Ruminants are able to utilize N and P through endogenous recycling, particularly in times of scarcity. When N and/or P were reduced, changes in mineral homeostasis associated with modulation of renal calcitriol metabolism occurred. The aim of this study was to investigate the potential effects of dietary N- and/or P-reduction on the regulatory mechanisms of mineral transport in the kidney and its hormonal regulation in young goats. Results During N-reduction, calcium (Ca) and magnesium (Mg) concentrations in blood decreased, accompanied by a lower protein expression of cytochrome P450 family 27 subfamily B member 1 (CYP27B1) (p = 0.016). The P-reduced fed goats had low blood phosphate concentrations with simultaneously high Ca and Mg levels. The insulin-like growth factor 1 concentrations decreased significantly with P-reduction. Furthermore, gene expression of CYP27B1 (p < 0.001) and both gene (p = 0.025) and protein (p = 0.016) expression of the fibroblast growth factor receptor 1c isoform in the kidney were also significantly reduced during a P-reduced diet. ERK1/2 activation exhibited a trend toward reduction in P-reduced animals. Interestingly, calcitriol concentrations remained unaffected by either restriction individually, but interacted significantly with N and P (p = 0.014). Additionally, fibroblast growth factor 23 mRNA expression in bone decreased significantly with P-restriction (p < 0.001). Discussion These results shed light on the complex metabolic and regulatory responses of mineral transport of young goats to dietary N and P restriction.
Collapse
Affiliation(s)
- Luisa S. Zillinger
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Karin Hustedt
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Nadine Schnepel
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Frank Hirche
- Institute of Agricultural and Nutritional Science, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Marion Schmicke
- Clinic for Cattle, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Gabriele I. Stangl
- Institute of Agricultural and Nutritional Science, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Alexandra S. Muscher-Banse
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| |
Collapse
|
3
|
Zhu J, Zhou T, Menggen M, Aimulajiang K, Wen H. Ghrelin regulating liver activity and its potential effects on liver fibrosis and Echinococcosis. Front Cell Infect Microbiol 2024; 13:1324134. [PMID: 38259969 PMCID: PMC10800934 DOI: 10.3389/fcimb.2023.1324134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
Ghrelin widely exists in the central nervous system and peripheral organs, and has biological activities such as maintaining energy homeostasis, regulating lipid metabolism, cell proliferation, immune response, gastrointestinal physiological activities, cognition, memory, circadian rhythm and reward effects. In many benign liver diseases, it may play a hepatoprotective role against steatosis, chronic inflammation, oxidative stress, mitochondrial dysfunction, endoplasmic reticulum stress and apoptosis, and improve liver cell autophagy and immune response to improve disease progression. However, the role of Ghrelin in liver Echinococcosis is currently unclear. This review systematically summarizes the molecular mechanisms by which Ghrelin regulates liver growth metabolism, immune-inflammation, fibrogenesis, proliferation and apoptosis, as well as its protective effects in liver fibrosis diseases, and further proposes the role of Ghrelin in liver Echinococcosis infection. During the infectious process, it may promote the parasitism and survival of parasites on the host by improving the immune-inflammatory microenvironment and fibrosis state, thereby accelerating disease progression. However, there is currently a lack of targeted in vitro and in vivo experimental evidence for this viewpoint.
Collapse
Affiliation(s)
- Jiang Zhu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Department of Hepatobiliary and Hydatid Disease, Digestive and Vascular Surgery Center Therapy Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Tanfang Zhou
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Department of Hepatobiliary and Hydatid Disease, Digestive and Vascular Surgery Center Therapy Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Meng Menggen
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Kalibixiati Aimulajiang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Hao Wen
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Department of Hepatobiliary and Hydatid Disease, Digestive and Vascular Surgery Center Therapy Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
4
|
Van Nevel H, Hustedt K, Schnepel N, Muscher-Banse AS. The GH/IGF1 axis in the kidney of young goats fed a protein-reduced diet. Animal 2023; 17:100897. [PMID: 37478798 DOI: 10.1016/j.animal.2023.100897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/23/2023] Open
Abstract
Feeding approaches for ruminants are changing to reduce N excretion as a major source of pollution. Based on the ruminohepatic cycle of N, it was assumed that the metabolism of ruminants could tolerate a reduced-protein diet well. However, metabolic changes such as a reduction in hepatic IGF1 mRNA expression, resulting in lower blood IGF1 levels due to decreased hepatic growth hormone receptor (GHR) expression, were found. Therefore, the aim of the present study was to determine the effect of a low-protein diet on the expression of GHR and subsequent IGF1 signalling in the renal cortex of young male goats to verify whether organ-specific synthesis of IGF1 mRNA expression occurs. Kidney cortex samples were obtained from eight goats fed a control diet (20% CP) and nine animals fed a reduced-protein diet (9% CP). The expression of GHR in the kidneys was reduced, whereas the expression of Janus kinase 2 (JAK2), suppressor of cytokine signalling 3 and signal transducers and activators of transcription 3 (STAT3) increased significantly. The stimulated JAK2 expression could modulate the expression of STAT3, which led to increased renal IGF1 mRNA expression. These results suggest that this increase in IGF1 mRNA expression in the kidneys is tissue-specific. This could be due to the autocrine/paracrine IGF1 effect on renal cell metabolism during a protein-reduced diet. These signalling pathways need further investigation to understand how and why low levels of protein stimulate IGF1 synthesis differently in the kidney than in the liver.
Collapse
Affiliation(s)
- H Van Nevel
- UC Davis School of Veterinary Medicine, University of California-Davis, Davis, CA, USA
| | - K Hustedt
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15/102, 30173 Hannover, Germany
| | - N Schnepel
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15/102, 30173 Hannover, Germany
| | - A S Muscher-Banse
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15/102, 30173 Hannover, Germany.
| |
Collapse
|
5
|
Weber SL, Hustedt K, Schnepel N, Visscher C, Muscher-Banse AS. Modulation of GCN2/eIF2α/ATF4 Pathway in the Liver and Induction of FGF21 in Young Goats Fed a Protein- and/or Phosphorus-Reduced Diet. Int J Mol Sci 2023; 24:ijms24087153. [PMID: 37108315 PMCID: PMC10138370 DOI: 10.3390/ijms24087153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Mammals respond to amino acid (AA) deficiency by initiating an AA response pathway (AAR) that involves the activation of general control nonderepressible 2 (GCN2), phosphorylation of eukaryotic translation initiation factor 2α (eIF2α), and activation of transcription factor 4 (ATF4). In this study, the effects of protein (N) and/or phosphorus (P) restriction on the GCN2/eIF2α/ATF4 pathway in the liver and the induction of fibroblast growth factor 21 (FGF21) in young goats were investigated. An N-reduced diet resulted in a decrease in circulating essential AA (EAA) and an increase in non-essential AA (NEAA), as well as an increase in hepatic mRNA expression of GCN2 and ATF4 and protein expression of GCN2. Dietary N restriction robustly increased both hepatic FGF21 mRNA expression and circulating FGF21 levels. Accordingly, numerous significant correlations demonstrated the effects of the AA profile on the AAR pathway and confirmed an association. Furthermore, activation of the AAR pathway depended on the sufficient availability of P. When dietary P was restricted, the GCN2/eIF2α/ATF4 pathway was not initiated, and no increase in FGF21 was observed. These results illustrate how the AAR pathway responds to N- and/or P-reduced diets in ruminants, thus demonstrating the complexity of dietary component changes.
Collapse
Affiliation(s)
- Sarah L Weber
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, 30173 Hannover, Germany
| | - Karin Hustedt
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, 30173 Hannover, Germany
| | - Nadine Schnepel
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, 30173 Hannover, Germany
| | - Christian Visscher
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, 30173 Hannover, Germany
| | - Alexandra S Muscher-Banse
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, 30173 Hannover, Germany
| |
Collapse
|
6
|
Cheng Y, Yang C, Chen W, Yan Q, Tan Z, He Z. Effects of substituting soybean meal with corn on immune function and gene expression of gut TLR4 pathway of growing goats. PeerJ 2022; 10:e12910. [PMID: 35186490 PMCID: PMC8830315 DOI: 10.7717/peerj.12910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 01/19/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Protein malnutrition remains a severe problem in ruminant production and can increase susceptibility to infection, especially during the growth stage. This study aimed to explore substituting soybean meal with corn on activation of the TLR pathway and potential impact on immune response bias towards Type 1 or Type 2 using growing female goats as experimental animals. METHODS Twenty-four Xiangdong black goats (initial BW = 19.83 ± 0.53 kg, about 8 ± 0.3 months old) were selected and randomly divided into the corn-soybean meal basal diet group (CON, 10.77% protein) and replacing soybean meal with 100% of corn group (CRS, 5.52% protein). EDTA whole blood and serum samples were collected prior to slaughter for determinations of blood cell counts, anti-inflammatory cytokines and antibodies. The duodenum, jejunum, ileum and colon tissues were collected after formal trial to study the effect of CRS diet on the expression of TLR4 pathway. RESULTS Our results showed CRS diet did not induce a significant change in immune function, as evidenced by the observations that white blood cell (WBC), neutrophil (Neu), lymphocyte (Lym), monocyte (Mon), eosinophil (Eos), interleukin-4 (IL-4), IL-5, IL-13, immunoglobin G (IgG), IgA, and IgM levels in serum were similar between the two groups. RT-PCR results showed the expression of tumor necrosis factor-α (TNF-α) (P < 0.01) and interferon-β (IFN-β) (P < 0.01) were up-regulated in the colon of goats in the CRS group. No differences in the expression of myeloid differentiation factor 88 (MyD88) adaptor-like protein (TIRAP), IL-1 receptor-associated kinase 1 (IRAK1), TNF receptor related factor 6 (TRAF6), NF-kappa B (NF-κB), mitogen-activated protein kinase 1 (MAPK1) or activator protein-1 (AP-1) in the TLR4/MyD88 dependent pathway were observed between the two groups for any of the tested tissue. However, the expression of NF-κB activator (TANK) binding kinase 1 (TBK1) in TLR4/MyD88 independent pathway was up-regulated in the duodenum and colon (P < 0.01), and the expression of interferon regulatory factor-3 (IRF3) was up-regulated (P < 0.01) in colon. CONCLUSIONS Our results suggested that the CRS diet failed to induce a significant change in innate immunity and adaptive immunity in growing goats. However, the up-regulated TBK1 and IRF3 in the colon from the CRS goats suggests that the CRS diet may induce the expression of Th1-type proinflammatory cytokines and inflammatory response through a TLR4-MyD88-independent pathway, and the colon may be the easiest targeted section in the intestinal tract.
Collapse
Affiliation(s)
- Yan Cheng
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China,University of Chinese Academy of Sciences, Beijing, China
| | - Chao Yang
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China,University of Chinese Academy of Sciences, Beijing, China
| | - Wenxun Chen
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China,University of Chinese Academy of Sciences, Beijing, China
| | - Qiongxian Yan
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China,University of Chinese Academy of Sciences, Beijing, China,Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Changsha, Hunan, China
| | - Zhiliang Tan
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China,University of Chinese Academy of Sciences, Beijing, China,Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Changsha, Hunan, China
| | - Zhixiong He
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China,University of Chinese Academy of Sciences, Beijing, China,Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Changsha, Hunan, China
| |
Collapse
|
7
|
Mi H, Li H, Jiang W, Song W, Yan Q, He Z, Tan Z. Calcium Homeostasis and Bone Metabolism in Goats Fed a Low Protein Diet. Front Vet Sci 2022; 8:829872. [PMID: 35187142 PMCID: PMC8850410 DOI: 10.3389/fvets.2021.829872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/28/2021] [Indexed: 11/13/2022] Open
Abstract
The objective of this study was to investigate the effects of low-protein diets on blood calcium (Ca) level, bone metabolism, and the correlation between bone metabolism and blood calcium in goats. Twenty-four female Xiangdong black goats with similar body weight (19.55 ± 3.55 kg) and age (8.0 ± 0.3 months) were selected and allocated into two groups: control group (CON, 10.77% protein content) and low-protein group (LP, 5.52% protein content). Blood samples were collected on days 1, 4, 7, 16 and 36 before morning feeding to determine the concentration of calcium (Ca), parathyroid hormone (PTH), bone gla protein (BGP), C-terminal telopeptide of type 1 collagen (CTX-1), bone alkaline phosphatase (BALP), and 1, 25-dihydroxyvitamin D3 [1,25(OH)2D3]. Liver samples were collected to determine the expression of bone metabolism-related genes. There was no difference observed between LP and CON in concentration of plasma Ca or any of bone metabolism markers (P > 0.05). In the liver, the mRNA expression of bone gamma carboxyglutamate protein (BGLAP), alkaline phosphatase (ALPL), and mothers against decapentaplegic homolog-1 (SMAD1) were increased (P < 0.05) in LP as compared with CON. The correlation analysis of Ca and bone metabolism markers showed no significant correlation between Ca and bone metabolism. These results suggest that the blood Ca concentration in mature goats may keep at a stable level through nitrogen cycling when the providing protein is not enough.
Collapse
Affiliation(s)
- Hui Mi
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haobang Li
- Hunan Institute of Animal and Veterinary Science, Changsha, China
- Haobang Li
| | - Weimin Jiang
- Hunan Institute of Animal and Veterinary Science, Changsha, China
| | - Wu Song
- Hunan Institute of Animal and Veterinary Science, Changsha, China
| | - Qiongxian Yan
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
- Hunan Co-innovation Center of Animal Production Safety (CICAPS), Changsha, China
| | - Zhixiong He
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
- University of Chinese Academy of Sciences, Beijing, China
- Hunan Co-innovation Center of Animal Production Safety (CICAPS), Changsha, China
- *Correspondence: Zhixiong He
| | - Zhiliang Tan
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
- University of Chinese Academy of Sciences, Beijing, China
- Hunan Co-innovation Center of Animal Production Safety (CICAPS), Changsha, China
| |
Collapse
|
8
|
Zheng J, Du M, Zhang J, Liang Z, Ahmad AA, Shen J, Salekdeh GH, Ding X. Transcriptomic and Metabolomic Analyses Reveal Inhibition of Hepatic Adipogenesis and Fat Catabolism in Yak for Adaptation to Forage Shortage During Cold Season. Front Cell Dev Biol 2022; 9:759521. [PMID: 35111749 PMCID: PMC8802892 DOI: 10.3389/fcell.2021.759521] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/02/2021] [Indexed: 12/20/2022] Open
Abstract
Animals have adapted behavioral and physiological strategies to conserve energy during periods of adverse conditions. Hepatic glucose is one such adaptation used by grazing animals. While large vertebrates have been shown to have feed utilization and deposition of nutrients—fluctuations in metabolic rate—little is known about the regulating mechanism that controls hepatic metabolism in yaks under grazing conditions in the cold season. Hence, the objective of this research was to integrate transcriptomic and metabolomic data to better understand how the hepatic responds to chronic nutrient stress. Our analyses indicated that the blood parameters related to energy metabolism (glucose, total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, lipoprotein lipase, insulin, and insulin-like growth factor 1) were significantly (p < 0.05) lower in the cold season. The RNA-Seq results showed that malnutrition inhibited lipid synthesis (particularly fatty acid, cholesterol, and steroid synthesis), fatty acid oxidation, and lipid catabolism and promoted gluconeogenesis by inhibiting the peroxisome proliferator-activated receptor (PPAR) and PI3K-Akt signaling pathways. For metabolite profiles, 359 metabolites were significantly altered in two groups. Interestingly, the cold season group remarkably decreased glutathione and phosphatidylcholine (18:2 (2E, 4E)/0:0). Moreover, integrative analysis of the transcriptome and metabolome demonstrated that glycolysis or gluconeogenesis, PPAR signaling pathway, fatty acid biosynthesis, steroid biosynthesis, and glutathione metabolism play an important role in the potential relationship between differential expression genes and metabolites. The reduced lipid synthesis, fatty acid oxidation, and fat catabolism facilitated gluconeogenesis by inhibiting the PPAR and PI3K-Akt signaling pathways to maintain the energy homeostasis of the whole body in the yak, thereby coping with the shortage of forages and adapting to the extreme environment of the Qinghai-Tibetan Plateau (QTP).
Collapse
Affiliation(s)
- Juanshan Zheng
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs & Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Mei Du
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs & Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jianbo Zhang
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs & Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zeyi Liang
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs & Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Anum Ali Ahmad
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Jiahao Shen
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs & Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ghasem Hosseini Salekdeh
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education, and Extension Organization, Karaj, Iran
- *Correspondence: Ghasem Hosseini Salekdeh, ; Xuezhi Ding,
| | - Xuezhi Ding
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs & Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- *Correspondence: Ghasem Hosseini Salekdeh, ; Xuezhi Ding,
| |
Collapse
|
9
|
Cheng Y, Li W, Gui R, Wang C, Song J, Wang Z, Wang X, Shen Y, Wang Z, Hao L. Dual Characters of GH-IGF1 Signaling Pathways in Radiotherapy and Post-radiotherapy Repair of Cancers. Front Cell Dev Biol 2021; 9:671247. [PMID: 34178997 PMCID: PMC8220142 DOI: 10.3389/fcell.2021.671247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/17/2021] [Indexed: 12/02/2022] Open
Abstract
Radiotherapy remains one of the most important cancer treatment modalities. In the course of radiotherapy for tumor treatment, the incidental irradiation of adjacent tissues could not be completely avoided. DNA damage is one of the main factors of cell death caused by ionizing radiation, including single-strand (SSBs) and double-strand breaks (DSBs). The growth hormone-Insulin-like growth factor 1 (GH-IGF1) axis plays numerous roles in various systems by promoting cell proliferation and inhibiting apoptosis, supporting its effects in inducing the development of multiple cancers. Meanwhile, the GH-IGF1 signaling involved in DNA damage response (DDR) and DNA damage repair determines the radio-resistance of cancer cells subjected to radiotherapy and repair of adjacent tissues damaged by radiotherapy. In the present review, we firstly summarized the studies on GH-IGF1 signaling in the development of cancers. Then we discussed the adverse effect of GH-IGF1 signaling in radiotherapy to cancer cells and the favorable impact of GH-IGF1 signaling on radiation damage repair to adjacent tissues after irradiation. This review further summarized recent advances on research into the molecular mechanism of GH-IGF1 signaling pathway in these effects, expecting to specify the dual characters of GH-IGF1 signaling pathways in radiotherapy and post-radiotherapy repair of cancers, subsequently providing theoretical basis of their roles in increasing radiation sensitivity during cancer radiotherapy and repairing damage after radiotherapy.
Collapse
Affiliation(s)
- Yunyun Cheng
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Wanqiao Li
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Ruirui Gui
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Chunli Wang
- College of Animal Science, Jilin University, Changchun, China
| | - Jie Song
- College of Animal Science, Jilin University, Changchun, China
| | - Zhaoguo Wang
- College of Animal Science, Jilin University, Changchun, China
| | - Xue Wang
- The First Hospital of Jilin University, Changchun, China
| | - Yannan Shen
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Zhicheng Wang
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Linlin Hao
- College of Animal Science, Jilin University, Changchun, China
| |
Collapse
|
10
|
Zhu X, Li Y, Xu G, Fu C. Growth hormone receptor promotes breast cancer progression via the BRAF/MEK/ERK signaling pathway. FEBS Open Bio 2020; 10:1013-1020. [PMID: 32069380 PMCID: PMC7262926 DOI: 10.1002/2211-5463.12816] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/10/2020] [Accepted: 02/17/2020] [Indexed: 12/18/2022] Open
Abstract
Growth hormone receptor (GHR), a member of the class I cytokine receptor family, plays key roles in cancer progression. Recently, GHR has been reported to be associated with breast cancer development, but the molecular mechanism of GHR in this malignancy is not fully understood. To investigate this issue, we stably inhibited GHR in breast cancer cell lines, which were observed to reduce cell proliferation, tumor growth and induction of apoptosis, and arrest the cell‐cycle arrest at the G1–S phase transition. In addition, GHR silencing suppressed the protein levels of B‐Raf proto‐oncogene, serine/threonine kinase (BRAF), Mitogen‐activated protein kinase kinase (MEK) and Extracellular regulated protein kinases (ERK). These findings suggest that GHR may mediate breast cell progression and apoptosis through control of the cell cycle via the BRAF/MEK/ERK signaling pathway.
Collapse
Affiliation(s)
- Xiaojue Zhu
- Clinical Laboratory, Zhangjiagang First People's Hospital, Suzhou University, Suzhou, China
| | - Yonghao Li
- Clinical Laboratory, Zhangjiagang First People's Hospital, Suzhou University, Suzhou, China
| | - Guoxin Xu
- Clinical Laboratory, Zhangjiagang First People's Hospital, Suzhou University, Suzhou, China
| | - ChangQing Fu
- Zhangjiagang Fifth People's Hospital, Suzhou, China
| |
Collapse
|