1
|
Zhao W, Wang Y, Liu X, Wang Y, Yuan X, Zhao G, Cui H. Multi-Omics Analysis of Genes Encoding Proteins Involved in Alpha-Linolenic Acid Metabolism in Chicken. Foods 2023; 12:3988. [PMID: 37959108 PMCID: PMC10648152 DOI: 10.3390/foods12213988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/10/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Alpha-linolenic acid (ALA, ω-3) is an antioxidant that reduces triglyceride (TG) levels in blood, a component of cell membranes and a precursor compound of eicosapentaenoic acid (EPA, ω-3) and eicosatrienoic acid (DHA, ω-3). Fatty acid content is a quantitative trait regulated by multiple genes, and the key genes regulating fatty acid metabolism have not been systematically identified. This study aims at investigating the protein-encoding genes regulating ω-3 polyunsaturated fatty acid (PUFA) content in chicken meat. We integrated genomics, transcriptomics and lipidomics data of Jingxing yellow chicken (JXY) to explore the interactions and associations among multiple genes involved in the regulation of fatty acid metabolism. Several key genes and pathways regulating ω-3 fatty acid metabolism in chickens were identified. The upregulation of GRB10 inhibited the mTOR signaling pathway, thereby improving the content of EPA and DHA. The downregulation of FGFR3 facilitated the conversion of ALA to EPA. Additionally, we analyzed the effects of ALA supplementation dose on glycerol esters (GLs), phospholipid (PL) and fatty acyl (FA) contents, as well as the regulatory mechanisms of nutritional responses in FFA metabolism. This study provides a basis for identifying genes and pathways that regulate the content of FFAs, and offers a reference for nutritional regulation systems in production.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Huanxian Cui
- State Key Laboratory of Animal Nutrition and Feeding, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Institute of Animal Science, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (W.Z.); (Y.W.); (X.L.); (Y.W.); (X.Y.); (G.Z.)
| |
Collapse
|
2
|
Dong Y, Wei Y, Wang L, Song K, Zhang C, Lu K, Rahimnejad S. Dietary n-3/n-6 polyunsaturated fatty acid ratio modulates growth performance in spotted seabass ( Lateolabrax maculatus) through regulating lipid metabolism, hepatic antioxidant capacity and intestinal health. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 14:20-31. [PMID: 37234947 PMCID: PMC10208799 DOI: 10.1016/j.aninu.2023.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 01/12/2023] [Accepted: 04/04/2023] [Indexed: 05/28/2023]
Abstract
An 8-week feeding experiment was carried out to explore the effects of dietary n-3/n-6 polyunsaturated fatty acid (PUFA) ratio on growth performance, lipid metabolism, hepatic antioxidant status, and gut flora of spotted seabass (Lateolabrax maculatus). Six experimental diets were formulated to contain different levels of two purified oil sources including docosahexaenoic and eicosapentaenoic acids enriched oil (n-3) and linoleic acid-enriched oil (n-6) leading to n-3/n-6 PUFA ratios of 0.04, 0.35, 0.66, 1.35, 2.45 and 16.17. Each diet was fed to triplicate groups of juvenile L. maculatus (11.06 ± 0.20 g, 30 fish/tank). Final body weight (FBW), weight gain (WG), specific growth rates (SGR), protein efficiency ratio (PER) and feed utilization efficiency increased as n-3/n-6 PUFA ratio increased up to a certain level, and then decreased thereafter. Fish fed the diet with n-3/n-6 PUFA ratio of 0.66 exhibited the highest FBW, WG, SGR and PER and the lowest feed conversion ratio. Lower n-3/n-6 PUFA ratios induced up-regulated expression of lipid synthesis-related genes (fas, acc2 and srebp-1c) and down-regulated expression of lipolysis related genes (atgl, pparα, cpt-1 and aox). Higher expression of lipolysis-related genes (atgl, pparα and cpt-1) was recorded at moderate n-3/n-6 PUFA ratios (0.66 to 1.35). Moreover, inappropriate n-3/n-6 PUFA ratios triggered up-regulation of pro-inflammatory genes (il-6 and tnf-α) and down-regulation of anti-inflammatory genes (il-4 and il-10) in the intestine. The diet with n-3/n-6 PUFA ratio of 0.66 inhibited intestine inflammation, improved intestinal flora richness, increased the abundance of beneficial bacteria such as Lactobacillus, Alloprevotella and Ruminococcus, and reduced the abundance of harmful bacteria including Escherichia-Shigella and Enterococcus. In summary, it could be suggested that a dietary n-3/n-6 PUFA ratio of 0.66 can improve growth performance and feed utilization in L. maculatus, as is deemed to be mediated through regulation of lipid metabolism and intestinal flora.
Collapse
Affiliation(s)
- Yanzou Dong
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China
| | - Yu Wei
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China
| | - Ling Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China
| | - Kai Song
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China
| | - Chunxiao Zhang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China
| | - Kangle Lu
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China
| | - Samad Rahimnejad
- Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Vodňany, Zátiší 728, Vodňany 389 25, Czech Republic
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, Murcia 30100, Spain
| |
Collapse
|
3
|
Emam M, Eslamloo K, Caballero-Solares A, Lorenz EK, Xue X, Umasuthan N, Gnanagobal H, Santander J, Taylor RG, Balder R, Parrish CC, Rise ML. Nutritional immunomodulation of Atlantic salmon response to Renibacterium salmoninarum bacterin. Front Mol Biosci 2022; 9:931548. [PMID: 36213116 PMCID: PMC9532746 DOI: 10.3389/fmolb.2022.931548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/12/2022] [Indexed: 11/18/2022] Open
Abstract
We investigated the immunomodulatory effect of varying levels of dietary ω6/ω3 fatty acids (FA) on Atlantic salmon (Salmo salar) antibacterial response. Two groups were fed either high-18:3ω3 or high-18:2ω6 FA diets for 8 weeks, and a third group was fed for 4 weeks on the high-18:2ω6 diet followed by 4 weeks on the high-18:3ω3 diet and termed "switched-diet". Following the second 4 weeks of feeding (i.e., at 8 weeks), head kidney tissues from all groups were sampled for FA analysis. Fish were then intraperitoneally injected with either a formalin-killed Renibacterium salmoninarum bacterin (5 × 107 cells mL-1) or phosphate-buffered saline (PBS control), and head kidney tissues for gene expression analysis were sampled at 24 h post-injection. FA analysis showed that the head kidney profile reflected the dietary FA, especially for C18 FAs. The qPCR analyses of twenty-three genes showed that both the high-ω6 and high-ω3 groups had significant bacterin-dependent induction of some transcripts involved in lipid metabolism (ch25ha and lipe), pathogen recognition (clec12b and tlr5), and immune effectors (znrf1 and cish). In contrast, these transcripts did not significantly respond to the bacterin in the "switched-diet" group. Concurrently, biomarkers encoding proteins with putative roles in biotic inflammatory response (tnfrsf6b) and dendritic cell maturation (ccl13) were upregulated, and a chemokine receptor (cxcr1) was downregulated with the bacterin injection regardless of the experimental diets. On the other hand, an inflammatory regulator biomarker, bcl3, was only significantly upregulated in the high-ω3 fed group, and a C-type lectin family member (clec3a) was only significantly downregulated in the switched-diet group with the bacterin injection (compared with diet-matched PBS-injected controls). Transcript fold-change (FC: bacterin/PBS) showed that tlr5 was significantly over 2-fold higher in the high-18:2ω6 diet group compared with other diet groups. FC and FA associations highlighted the role of DGLA (20:3ω6; anti-inflammatory) and/or EPA (20:5ω3; anti-inflammatory) vs. ARA (20:4ω6; pro-inflammatory) as representative of the anti-inflammatory/pro-inflammatory balance between eicosanoid precursors. Also, the correlations revealed associations of FA proportions (% total FA) and FA ratios with several eicosanoid and immune receptor biomarkers (e.g., DGLA/ARA significant positive correlation with pgds, 5loxa, 5loxb, tlr5, and cxcr1). In summary, dietary FA profiles and/or regimens modulated the expression of some immune-relevant genes in Atlantic salmon injected with R. salmoninarum bacterin. The modulation of Atlantic salmon responses to bacterial pathogens and their associated antigens using high-ω6/high-ω3 diets warrants further investigation.
Collapse
Affiliation(s)
- Mohamed Emam
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Khalil Eslamloo
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | | | - Evandro Kleber Lorenz
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Xi Xue
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | | | - Hajarooba Gnanagobal
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Javier Santander
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | | | - Rachel Balder
- Cargill Animal Nutrition and Health, Minneapolis, MN, United States
| | - Christopher C. Parrish
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Matthew L. Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| |
Collapse
|
4
|
Selvam C, Powell MD, Liland NS, Rosenlund G, Sissener NH. Impact of dietary level and ratio of n-6 and n-3 fatty acids on disease progression and mRNA expression of immune and inflammatory markers in Atlantic salmon ( Salmo salar) challenged with Paramoeba perurans. PeerJ 2021; 9:e12028. [PMID: 34540364 PMCID: PMC8415286 DOI: 10.7717/peerj.12028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/30/2021] [Indexed: 01/22/2023] Open
Abstract
The aim of the study was to investigate the influence of dietary level and ratio of n-6/n-3 fatty acids (FA) on growth, disease progression and expression of immune and inflammatory markers in Atlantic salmon (Salmo salar) following challenge with Paramoeba perurans. Fish (80 g) were fed four different diets with different ratios of n-6/n-3 FA; at 1.3, 2.4 and 6.0 and one diet with ratio of 1.3 combined with a higher level of n-3 FA and n-6 FA. The diet with the n-6/n-3 FA ratio of 6.0 was included to ensure potential n-6 FA effects were revealed, while the three other diets were more commercially relevant n-6/n-3 FA ratios and levels. After a pre-feeding period of 3 months, fish from each diet regime were challenged with a standardized laboratory challenge using a clonal culture of P. perurans at the concentration of 1,000 cells L−1. The subsequent development of the disease was monitored (by gross gill score), and sampling conducted before challenge and at weekly sampling points for 5 weeks post-challenge. Challenge with P. perurans did not have a significant impact on the growth of the fish during the challenge period, but fish given the feed with the highest n-6/n-3 FA ratio had reduced growth compared to the other groups. Total gill score for all surfaces showed a significant increase with time, reaching a maximum at 21 days post-challenge and declined thereafter, irrespective of diet groups. Challenge with P. perurans influenced the mRNA expression of examined genes involved in immune and inflammatory response (TNF-α, iNOS, IL4-13b, GATA-3, IL-1β, p53, COX2 and PGE2-EP4), but diet did not influence the gene expression. In conclusion, an increase in dietary n-6/n-3 FA ratio influenced the growth of Atlantic salmon challenged with P. perurans; however, it did not alter the mRNA expression of immune genes or progression of the disease.
Collapse
Affiliation(s)
- Chandrasekar Selvam
- Institute of Marine Research, Bergen, Norway.,Central Marine Fisheries Research Institute, Kochi, India
| | - Mark D Powell
- Marineholmen RAS Lab AS & University of Bergen, Bergen, Norway
| | | | | | | |
Collapse
|