Macharia R, Mireji P, Murungi E, Murilla G, Christoffels A, Aksoy S, Masiga D. Genome-Wide Comparative Analysis of Chemosensory Gene Families in Five Tsetse Fly Species.
PLoS Negl Trop Dis 2016;
10:e0004421. [PMID:
26886411 PMCID:
PMC4757090 DOI:
10.1371/journal.pntd.0004421]
[Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/11/2016] [Indexed: 12/04/2022] Open
Abstract
For decades, odour-baited traps have been used for control of tsetse flies (Diptera; Glossinidae), vectors of African trypanosomes. However, differential responses to known attractants have been reported in different Glossina species, hindering establishment of a universal vector control tool. Availability of full genome sequences of five Glossina species offers an opportunity to compare their chemosensory repertoire and enhance our understanding of their biology in relation to chemosensation. Here, we identified and annotated the major chemosensory gene families in Glossina. We identified a total of 118, 115, 124, and 123 chemosensory genes in Glossina austeni, G. brevipalpis, G. f. fuscipes, G. pallidipes, respectively, relative to 127 reported in G. m. morsitans. Our results show that tsetse fly genomes have fewer chemosensory genes when compared to other dipterans such as Musca domestica (n>393), Drosophila melanogaster (n = 246) and Anopheles gambiae (n>247). We also found that Glossina chemosensory genes are dispersed across distantly located scaffolds in their respective genomes, in contrast to other insects like D. melanogaster whose genes occur in clusters. Further, Glossina appears to be devoid of sugar receptors and to have expanded CO2 associated receptors, potentially reflecting Glossina's obligate hematophagy and the need to detect hosts that may be out of sight. We also identified, in all species, homologs of Ir84a; a Drosophila-specific ionotropic receptor that promotes male courtship suggesting that this is a conserved trait in tsetse flies. Notably, our selection analysis revealed that a total of four gene loci (Gr21a, GluRIIA, Gr28b, and Obp83a) were under positive selection, which confers fitness advantage to species. These findings provide a platform for studies to further define the language of communication of tsetse with their environment, and influence development of novel approaches for control.
Chemical sensing is crucial to survival of tsetse flies; the sole cyclical vectors of African trypanosomes that cause the neglected zoonotic tropical disease sleeping sickness in humans. For many years, vector control has been used to mitigate trypanosome infections among rural populations of sub-Saharan Africa. Nevertheless, development of an all-inclusive strategy to control tsetse flies using odour-baited traps has been limited by disparate responses to the odors exhibited by various tsetse species. In this study, proteins that are putatively involved in chemical sensing were identified and compared among five tsetse species and their close relatives with an aim of enhancing our knowledge on tsetse olfaction. Our findings suggest that the chemosensory genes are conserved across tsetse fly species despite their documented differential responses in odours. We found no species-specific sequence variations among the five species to suggest that differential response to odours is due to loss or gain of genes. It could therefore be hypothesized that the observed differences emerge during the downstream processing of odour molecules involving post translational modification of the chemosensory proteins. We thus recommend functional studies on the identified proteins to determine their roles and molecular interactions.
Collapse