1
|
Liu Y, Francis RA, Wooster MJ, Grosvenor MJ, Yan S, Roberts G. Systematic Mapping and Review of Landscape Fire Smoke (LFS) Exposure Impacts on Insects. ENVIRONMENTAL ENTOMOLOGY 2022; 51:871-884. [PMID: 36130330 PMCID: PMC9585373 DOI: 10.1093/ee/nvac069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Indexed: 06/15/2023]
Abstract
Landscape fire activity is changing in many regions because of climate change. Smoke emissions from landscape fires contain many harmful air pollutants, and beyond the potential hazard posed to human health, these also have ecological impacts. Insects play essential roles in most ecosystems worldwide, and some work suggests they may also be sensitive to smoke exposure. There is therefore a need for a comprehensive review of smoke impacts on insects. We systematically reviewed the scientific literature from 1930 to 2022 to synthesize the current state of knowledge of the impacts of smoke exposure from landscape fires on the development, behavior, and mortality of insects. We found: (1) 42 relevant studies that met our criteria, with 29% focused on the United States of America and 19% on Canada; (2) of these, 40 insect species were discussed, all of which were sensitive to smoke pollution; (3) most of the existing research focuses on how insect behavior responds to landscape fire smoke (LFS); (4) species react differently to smoke exposure, with for example some species being attracted to the smoke (e.g., some beetles) while others are repelled (e.g., some bees). This review consolidates the current state of knowledge on how smoke impacts insects and highlights areas that may need further investigation. This is particularly relevant since smoke impacts on insect communities will likely worsen in some areas due to increasing levels of biomass burning resulting from the joint pressures of climate change, land use change, and more intense land management involving fire.
Collapse
Affiliation(s)
- Yanan Liu
- Department of Geography, King’s College London, Bush House, 40 Aldwych, London, WC2B 4BG, UK
- Leverhulme Centre for Wildfires, Environment and Society, King’s College London, London WC2R 2LS, UK
| | - Robert A Francis
- Department of Geography, King’s College London, Bush House, 40 Aldwych, London, WC2B 4BG, UK
| | - Martin J Wooster
- Department of Geography, King’s College London, Bush House, 40 Aldwych, London, WC2B 4BG, UK
- Leverhulme Centre for Wildfires, Environment and Society, King’s College London, London WC2R 2LS, UK
- NERC National Centre for Earth Observation, King’s College London, London WC2R 2LS, UK
| | - Mark J Grosvenor
- Department of Geography, King’s College London, Bush House, 40 Aldwych, London, WC2B 4BG, UK
- Leverhulme Centre for Wildfires, Environment and Society, King’s College London, London WC2R 2LS, UK
- NERC National Centre for Earth Observation, King’s College London, London WC2R 2LS, UK
| | - Su Yan
- Department of Electrical and Electronic Engineering, Imperial CollegeLondon, London SW7 2BX, UK
| | - Gareth Roberts
- Geography and Environmental Science, University of Southampton, Southampton, UK
| |
Collapse
|
2
|
Gibson DJ, Adamowicz SJ, Jacobs SR, Smith MA. Host Specificity in Subarctic Aphids. ENVIRONMENTAL ENTOMOLOGY 2018; 47:77-86. [PMID: 29186477 DOI: 10.1093/ee/nvx176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Plants and herbivorous (or parasitic) insects form the majority of macroscopic life. The specificity of interaction between host plant and parasitic insect depends on the adaptations of both the host and the parasite. Over time, these interactions evolve and change as a result of an 'arms race' between host and parasite, and the resulting species-specific adaptations may be maintained, perpetuating these interactions across speciation events. This can lead to specialisation between species or clades. With speciation and species sorting over time, complex interactions evolve. Here, we elucidate a three-tier method to test these interactions using the aphids (Hemiptera: Aphididae) and plants of Churchill (Manitoba, Canada) as a model system. We analyzed these interactions by testing for three patterns in host specificity: monophagy, phylogenetic clustering, and cophylogeny. We defined monophagy strictly as one species feeding exclusively upon a single host plant species (an association likely driven by arms races in morphology, chemical resistance/tolerance, and visual appearance) and observed this in 7 of 22 aphid species. In all the remaining 'polyphagous' cases, there was a strong trend toward monophagy (80% of individuals were found on a single host plant species). Second, we observed two separate examples of phylogenetic clustering where groups of closely related aphid species fed upon individual plant species. Finally, we found no support for cophylogenetic relationships where both aphids and plants cospeciate to form congruent phylogenetic trees (evidence of coadaptation through an ongoing arms race). One explanation for uncovering species-specific interactions in a recently deglaciated, subarctic locality is that the species involved in the associations moved north together. Testing different levels of specificity in the most predominant species-species interactions on the planet will allow us to elucidate these patterns accurately and gives us insight into where to direct future research.
Collapse
Affiliation(s)
- Daniel J Gibson
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
- Churchill Northern Studies Centre, Manitoba, Canada
| | - Sarah J Adamowicz
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
- Biodiversity Institute of Ontario, University of Guelph, Guelph, Ontario, Canada
| | - Shoshanah R Jacobs
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - M Alex Smith
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
3
|
Andersen JC, Mills NJ. Comparative genetics of invasive populations of walnut aphid, Chromaphis juglandicola, and its introduced parasitoid, Trioxys pallidus, in California. Ecol Evol 2018; 8:801-811. [PMID: 29321915 PMCID: PMC5756880 DOI: 10.1002/ece3.3667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 10/13/2017] [Accepted: 10/27/2017] [Indexed: 01/08/2023] Open
Abstract
Coevolution may be an important component of the sustainability of importation biological control, but how frequently introduced natural enemies coevolve with their target pests is unclear. Here we explore whether comparative population genetics of the invasive walnut aphid, Chromaphis juglandicola, and its introduced parasitoid, Trioxys pallidus, provide insights into the localized breakdown of biological control services in walnut orchards in California. We found that sampled populations of C. juglandicola exhibited higher estimates of genetic differentiation (FST) than co-occurring populations of T. pallidus. In contrast, estimates of both the inbreeding coefficient (GIS) and contemporary gene flow were higher for T. pallidus than for C. juglandicola. We also found evidence of reciprocal outlier loci in some locations, but none showed significant signatures of selection. Synthesis and applications. Understanding the importance of coevolutionary interactions for the sustainability of biological control remains an important and understudied component of biological control research. Given the observed differences in gene flow and genetic differentiation among populations of T. pallidus and C. juglandicola, we suspect that temporary local disruption of biological control services may occur more frequently than expected while remaining stable at broader regional scales. Further research that combines genomewide single nucleotide polymorphism genotyping with measurements of phenotypic traits is needed to provide more conclusive evidence of whether the occurrence of outlier loci that display significant signatures of selection can be interpreted as evidence of the presence of a geographic mosaic of coevolution in this system.
Collapse
Affiliation(s)
- Jeremy C. Andersen
- Department of Environmental Science Policy and ManagementUniversity of California BerkeleyBerkeleyCAUSA
| | - Nicholas J. Mills
- Department of Environmental Science Policy and ManagementUniversity of California BerkeleyBerkeleyCAUSA
| |
Collapse
|
4
|
Loxdale HD, Balog A. Aphid specialism as an example of ecological-evolutionary divergence. Biol Rev Camb Philos Soc 2017; 93:642-657. [PMID: 28836372 DOI: 10.1111/brv.12361] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/10/2017] [Accepted: 07/12/2017] [Indexed: 11/30/2022]
Abstract
Debate still continues around the definition of generalism and specialism in nature. To some, generalism is equated solely with polyphagy, but this cannot be readily divorced from other essential biological factors, such as morphology, behaviour, genetics, biochemistry, chemistry and ecology, including chemical ecology. Viewed in this light, and accepting that when living organisms evolve to fill new ecological-evolutionary niches, this is the primal act of specialisation, then perhaps all living organisms are specialist in the broadest sense. To illustrate the levels of specialisation that may be found in a group of animals, we here provide an overview of those displayed by a subfamily of hemipteran insects, the Aphididae, which comprises some 1600 species/subspecies in Europe alone and whose members are specialised in a variety of lifestyle traits. These include life cycle, host adaptation, dispersal and migration, associations with bacterial symbionts (in turn related to host adaptation and resistance to hymenopterous wasp parasitoids), mutualisms with ants, and resistance to insecticides. As with polyphagy, these traits cannot easily be separated from one another, but rather, are interconnected, often highly so, which makes the Aphididae a fascinating animal group to study, providing an informative, perhaps unique, model to illustrate the complexities of defining generalism versus specialism.
Collapse
Affiliation(s)
- Hugh D Loxdale
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, U.K
| | - Adalbert Balog
- Faculty of Technical and Human Science, Department of Horticulture, Sapientia Hungarian University of Transylvania, 540485, Tirgu-Mures, Romania
| |
Collapse
|
5
|
Nair A, Fountain T, Ikonen S, Ojanen SP, van Nouhuys S. Spatial and temporal genetic structure at the fourth trophic level in a fragmented landscape. Proc Biol Sci 2017; 283:rspb.2016.0668. [PMID: 27226470 DOI: 10.1098/rspb.2016.0668] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 04/28/2016] [Indexed: 11/12/2022] Open
Abstract
A fragmented habitat becomes increasingly fragmented for species at higher trophic levels, such as parasitoids. To persist, these species are expected to possess life-history traits, such as high dispersal, that facilitate their ability to use resources that become scarce in fragmented landscapes. If a specialized parasitoid disperses widely to take advantage of a sparse host, then the parasitoid population should have lower genetic structure than the host. We investigated the temporal and spatial genetic structure of a hyperparasitoid (fourth trophic level) in a fragmented landscape over 50 × 70 km, using microsatellite markers, and compared it with the known structures of its host parasitoid, and the butterfly host which lives as a classic metapopulation. We found that population genetic structure decreases with increasing trophic level. The hyperparasitoid has fewer genetic clusters (K = 4), than its host parasitoid (K = 15), which in turn is less structured than the host butterfly (K = 27). The genetic structure of the hyperparasitoid also shows temporal variation, with genetic differentiation increasing due to reduction of the population size, which reduces the effective population size. Overall, our study confirms the idea that specialized species must be dispersive to use a fragmented host resource, but that this adaptation has limits.
Collapse
Affiliation(s)
- Abhilash Nair
- Metapopulation Research Centre, Department of Biosciences, University of Helsinki, PO Box 65, 00014 Helsinki, Finland
| | - Toby Fountain
- Metapopulation Research Centre, Department of Biosciences, University of Helsinki, PO Box 65, 00014 Helsinki, Finland
| | - Suvi Ikonen
- Metapopulation Research Centre, Department of Biosciences, University of Helsinki, PO Box 65, 00014 Helsinki, Finland
| | - Sami P Ojanen
- Metapopulation Research Centre, Department of Biosciences, University of Helsinki, PO Box 65, 00014 Helsinki, Finland
| | - Saskya van Nouhuys
- Metapopulation Research Centre, Department of Biosciences, University of Helsinki, PO Box 65, 00014 Helsinki, Finland Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
6
|
|
7
|
Couchoux C, Seppä P, van Nouhuys S. Strong dispersal in a parasitoid wasp overwhelms habitat fragmentation and host population dynamics. Mol Ecol 2016; 25:3344-55. [DOI: 10.1111/mec.13696] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 04/14/2016] [Accepted: 05/02/2016] [Indexed: 01/22/2023]
Affiliation(s)
- C. Couchoux
- Department of Biosciences; Metapopulation Research Centre; University of Helsinki; PO Box 65 Helsinki FI-00014 Finland
| | - P. Seppä
- Department of Biosciences; Centre of Excellence in Biological Interactions; University of Helsinki; PO Box 65 Helsinki FI-00014 Finland
| | - S. van Nouhuys
- Department of Biosciences; Metapopulation Research Centre; University of Helsinki; PO Box 65 Helsinki FI-00014 Finland
- Department of Ecology and Evolutionary Biology; Cornell University; Ithaca NY 14853 USA
| |
Collapse
|
8
|
Loxdale HD, Harvey JA. The ‘generalism’ debate: misinterpreting the term in the empirical literature focusing on dietary breadth in insects. Biol J Linn Soc Lond 2016. [DOI: 10.1111/bij.12816] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hugh D. Loxdale
- School of Biosciences; Cardiff University; The Sir Martin Evans Building Museum Avenue Cardiff CF10 3AX UK
| | - Jeffrey A. Harvey
- Department of Terrestrial Ecology; Netherlands Institute of Ecology; Droevendaalsesteeg 10 6708 PB Wageningen the Netherlands
| |
Collapse
|
9
|
van Nouhuys S. Diversity, population structure, and individual behaviour of parasitoids as seen using molecular markers. CURRENT OPINION IN INSECT SCIENCE 2016; 14:94-99. [PMID: 27436653 DOI: 10.1016/j.cois.2016.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/06/2016] [Accepted: 02/08/2016] [Indexed: 06/06/2023]
Abstract
Parasitoids have long been models for host-parasite interactions, and are important in biological control. Neutral molecular markers have become increasingly accessible tools, revealing previously unknown parasitoid diversity. Thus, insect communities are now seen as more speciose. They have also been found to be more complex, based on trophic links detected using bits of parasitoid DNA in hosts, and host DNA in adult parasitoids. At the population level molecular markers are used to determine the influence of factors such as host dynamics on parasitoid population structure. Finally, at the individual level, they are used to identify movement of individuals. Overall molecular markers greatly increase the value of parasitoid samples collected, for both basic and applied research, at all levels of study.
Collapse
Affiliation(s)
- Saskya van Nouhuys
- Department of Biosciences, University of Helsinki, PO box 65, Helsinki 00014, Finland; Department of Entomology, Cornell University, Comstock Hall, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
10
|
Sutton TL, Riegler M, Cook JM. One step ahead: a parasitoid disperses farther and forms a wider geographic population than its fig wasp host. Mol Ecol 2016; 25:882-94. [DOI: 10.1111/mec.13445] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 10/26/2015] [Accepted: 10/28/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Timothy L. Sutton
- Hawkesbury Institute for the Environment; Western Sydney University; Locked Bag 1797 Penrith NSW 2751 Australia
| | - Markus Riegler
- Hawkesbury Institute for the Environment; Western Sydney University; Locked Bag 1797 Penrith NSW 2751 Australia
| | - James M. Cook
- Hawkesbury Institute for the Environment; Western Sydney University; Locked Bag 1797 Penrith NSW 2751 Australia
| |
Collapse
|
11
|
Abstract
Sexual reproduction is a pervasive attribute of eukaryotic species and is now recognized to occur in many clinically important human fungal pathogens. These fungi use sexual or parasexual strategies for various purposes that can have an impact on pathogenesis, such as the formation of drug-resistant isolates, the generation of strains with increased virulence or the modulation of interactions with host cells. In this Review, we examine the mechanisms regulating fungal sex and the consequences of these programmes for human disease.
Collapse
|