1
|
Guo J, Li J, Massart S, He K, Francis F, Wang Z. Analysis of the Genetic Diversity of Two Rhopalosiphum Species from China and Europe Based on Nuclear and Mitochondrial Genes. INSECTS 2023; 14:57. [PMID: 36661985 PMCID: PMC9866154 DOI: 10.3390/insects14010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Population genetic studies can reveal clues about the evolution of adaptive strategies of aphid species in agroecosystems and demonstrate the influence of environmental factors on the genetic diversity and gene flow among aphid populations. To investigate the genetic diversity of two Rhopalosiphum aphid species from different geographical regions, 32 populations (n = 535) of the bird cherry-oat aphid (Rhopalosiphum padi Linnaeus) and 38 populations (n = 808) of the corn leaf aphid (Rhopalosiphum maidis Fitch) from China and Europe were analyzed using one nuclear (elongation factor-1 alpha) and two mitochondrial (cytochrome oxidase I and II) genes. Based on the COI-COII sequencing, two obvious clades between Chinese and European populations and a low level of gene flow (Nm = 0.15) were detected in R. padi, while no geographical-associated genetic variation was found for EF-1α in this species. All genes in R. maidis had low genetic variation, indicating a high level of gene flow (Nm = 5.31 of COI-COII and Nm = 2.89 of EF-1α). Based on the mitochondrial result of R. padi, we concluded that the long distance between China and Europe may be interrupting the gene flow. The discordant results of nuclear gene analyses in R. padi may be due to the slower evolution of nuclear genes compared to mitochondrial genes. The gene exchange may occur gradually with the potential for continuous migration of the aphid. This study facilitates the design of control strategies for these pests.
Collapse
Affiliation(s)
- Jianqing Guo
- College of Agriculture and Forestry, Hebei North University, Zhangjiakou 075000, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Department of Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, B-5030 Gembloux, Belgium
| | - Jing Li
- School of Biological and Environmental Engineering, Xi’an University, No. 1 Keji Six Road, Xi’an 710065, China
| | - Sebastien Massart
- Department of Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, B-5030 Gembloux, Belgium
| | - Kanglai He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Frédéric Francis
- Department of Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, B-5030 Gembloux, Belgium
| | - Zhenying Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
2
|
Effect of the Genotypic Variation of an Aphid Host on the Endosymbiont Associations in Natural Host Populations. INSECTS 2021; 12:insects12030217. [PMID: 33806260 PMCID: PMC8001399 DOI: 10.3390/insects12030217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/10/2021] [Accepted: 02/10/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary The host–endosymbiont complex could be a key determinant in spread and maintenance of the infection polymorphism of endosymbionts. Variation among host–endosymbiont complexes can contribute to genetic variation of a host species and then provide the necessary material for the operating coevolutionary dynamics. We studied the seasonal dynamic of facultative endosymbiont infections among different host clones of the grain aphid Sitobion avenae and whether their presence affects the total hymenopteran parasitism of aphid hosts at the field level. We observed that aphid infections in the field with endosymbionts increase over time, by favoring particular aphid clones closely associated with endosymbionts, but without an effect of endosymbionts on parasitism rate in the host populations. Our results highlight the importance of host–endosymbiont couples in shaping the prevalence and distributions of symbionts throughout nature and the success of their hosts as pests. Abstract Understanding the role of facultative endosymbionts on the host’s ecology has been the main aim of the research in symbiont–host systems. However, current research on host–endosymbiont dynamics has failed to examine the genetic background of the hosts and its effect on host–endosymbiont associations in real populations. We have addressed the seasonal dynamic of facultative endosymbiont infections among different host clones of the grain aphid Sitobion avenae, on two cereal crops (wheat and oat) and whether their presence affects the total hymenopteran parasitism of aphid hosts at the field level. We present evidence of rapid seasonal shifts in the endosymbiont frequency, suggesting a positive selection of endosymbionts at the host-level (aphids) through an agricultural growing season, by two mechanisms; (1) an increase of aphid infections with endosymbionts over time, and (2) the seasonal replacement of host clones within natural populations by increasing the prevalence of aphid clones closely associated to endosymbionts. Our results highlight how genotypic variation of hosts can affect the endosymbiont prevalence in the field, being an important factor for understanding the magnitude and direction of the adaptive and/or maladaptive responses of hosts to the environment.
Collapse
|
3
|
Stoeckel S, Porro B, Arnaud-Haond S. The discernible and hidden effects of clonality on the genotypic and genetic states of populations: Improving our estimation of clonal rates. Mol Ecol Resour 2021; 21:1068-1084. [PMID: 33386695 DOI: 10.1111/1755-0998.13316] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 11/05/2020] [Accepted: 12/21/2020] [Indexed: 11/29/2022]
Abstract
Partial clonality is widespread across the tree of life, but most population genetic models are designed for exclusively clonal or sexual organisms. This gap hampers our understanding of the influence of clonality on evolutionary trajectories and the interpretation of population genetic data. We performed forward simulations of diploid populations at increasing rates of clonality (c), analysed their relationships with genotypic (clonal richness, R, and distribution of clonal sizes, Pareto β) and genetic (FIS and linkage disequilibrium) indices, and tested predictions of c from population genetic data through supervised machine learning. Two complementary behaviours emerged from the probability distributions of genotypic and genetic indices with increasing c. While the impact of c on R and Pareto β was easily described by simple mathematical equations, its effects on genetic indices were noticeable only at the highest levels (c > 0.95). Consequently, genotypic indices allowed reliable estimates of c, while genetic descriptors led to poorer performances when c < 0.95. These results provide clear baseline expectations for genotypic and genetic diversity and dynamics under partial clonality. Worryingly, however, the use of realistic sample sizes to acquire empirical data systematically led to gross underestimates (often of one to two orders of magnitude) of c, suggesting that many interpretations hitherto proposed in the literature, mostly based on genotypic richness, should be reappraised. We propose future avenues to derive realistic confidence intervals for c and show that, although still approximate, a supervised learning method would greatly improve the estimation of c from population genetic data.
Collapse
Affiliation(s)
- Solenn Stoeckel
- Institute for Genetics, Environment and Plant Protection, INRAE, Le Rheu, France
| | - Barbara Porro
- Institute for Research on Cancer and Aging (IRCAN), Université Côte d'Azur, Nice, France.,MARBEC - Marine Biodiversity Exploitation and Conservation, University of Montpellier, CNRS, Ifremer, IRD, MARBEC, Sète, France
| | - Sophie Arnaud-Haond
- MARBEC - Marine Biodiversity Exploitation and Conservation, University of Montpellier, CNRS, Ifremer, IRD, MARBEC, Sète, France
| |
Collapse
|
4
|
Rubio-Meléndez ME, Barrios-SanMartin J, Pina-Castro FE, Figueroa CC, Ramirez CC. Asexual reproduction of a few genotypes favored the invasion of the cereal aphid Rhopalosiphum padi in Chile. PeerJ 2019; 7:e7366. [PMID: 31388475 PMCID: PMC6662566 DOI: 10.7717/peerj.7366] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/27/2019] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Aphids (Hemiptera: Aphididae) are insects with one of the highest potentials for invasion. Several aphid species are present globally due to introduction events; they represent important pests of agroecosystems. The bird cherry-oat aphid Rhopalosiphum padi (Linnaeus) is a major pest of cereals and pasture grasses worldwide. Here, we report the genetic features of populations of R. padi that colonize different cereal crops in central Chile. METHODS Rhopalosiphum padi individuals were collected in central Chile and genotyped at six microsatellite loci. The most frequent multilocus genotype (MLG) was then studied further to assess its reproductive performance across cereal hosts under laboratory conditions. RESULTS Populations of R. padi in Chile are characterized by a low clonal diversity (G/N = 62/377 = 0.16) and the overrepresentation of a few widely distributed MLGs. One of the MLGs constituted roughly half of the sample and was observed in all sampled populations at high frequencies. Furthermore, this putative aphid "superclone" exhibited variations in its reproductive performance on cereals most commonly cultivated in Chile. The sampled populations also exhibited weak signs of genetic differentiation among hosts and localities. Our findings suggest that (1) obligate parthenogenesis is the primary reproductive mode of R. padi in Chile in the sampled range and (2) its introduction involved the arrival of a few genotypes that multiplied asexually.
Collapse
Affiliation(s)
- María E. Rubio-Meléndez
- Centre for Molecular and Functional Ecology in Agroecosystems, Universidad de Talca, Talca, Maule, Chile
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Maule, Chile
- Centro de Bioinformática y Simulación Molecular, Facultad de Ingeniería, Universidad de Talca, Talca, Maule, Chile
| | - Joceline Barrios-SanMartin
- Centre for Molecular and Functional Ecology in Agroecosystems, Universidad de Talca, Talca, Maule, Chile
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Maule, Chile
| | - Felipe E. Pina-Castro
- Centre for Molecular and Functional Ecology in Agroecosystems, Universidad de Talca, Talca, Maule, Chile
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Maule, Chile
| | - Christian C. Figueroa
- Centre for Molecular and Functional Ecology in Agroecosystems, Universidad de Talca, Talca, Maule, Chile
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Maule, Chile
| | - Claudio C. Ramirez
- Centre for Molecular and Functional Ecology in Agroecosystems, Universidad de Talca, Talca, Maule, Chile
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Maule, Chile
| |
Collapse
|
5
|
Figueroa CC, Fuentes-Contreras E, Molina-Montenegro MA, Ramírez CC. Biological and genetic features of introduced aphid populations in agroecosystems. CURRENT OPINION IN INSECT SCIENCE 2018; 26:63-68. [PMID: 29764662 DOI: 10.1016/j.cois.2018.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 01/12/2018] [Accepted: 01/16/2018] [Indexed: 06/08/2023]
Abstract
In agroecosystems, introduced aphids that reproduce by obligate parthenogenesis (OP) show strong biased representation of a few genotypes (superclones), whereas species with cyclical parthenogenesis (CP) exhibit the opposite trend with many unique genotypes. We analyzed the biological and genetic features of 23 different aphid species introduced in different geographic areas and climates, finding putative superclones in about 60% of them. We have examined the proximal causes for aphid establishment and spread after their introduction, and found that OP, host availability, and phenotypic plasticity are among the main variables underpinning the ability of aphids to succeed in new geographic areas, which may explain the high potential for invasion in this group of pest insects.
Collapse
Affiliation(s)
- Christian C Figueroa
- Instituto de Ciencias Biológicas, Universidad de Talca, Chile; Centre for Molecular and Functional Ecology in Agroecosystems, Universidad de Talca, 1 Poniente 1141, Talca, Chile.
| | - Eduardo Fuentes-Contreras
- Facultad de Ciencias Agrarias, Universidad de Talca, Chile; Centre for Molecular and Functional Ecology in Agroecosystems, Universidad de Talca, 1 Poniente 1141, Talca, Chile
| | - Marco A Molina-Montenegro
- Instituto de Ciencias Biológicas, Universidad de Talca, Chile; Centre for Molecular and Functional Ecology in Agroecosystems, Universidad de Talca, 1 Poniente 1141, Talca, Chile
| | - Claudio C Ramírez
- Instituto de Ciencias Biológicas, Universidad de Talca, Chile; Centre for Molecular and Functional Ecology in Agroecosystems, Universidad de Talca, 1 Poniente 1141, Talca, Chile
| |
Collapse
|
6
|
Rafajlović M, Kleinhans D, Gulliksson C, Fries J, Johansson D, Ardehed A, Sundqvist L, Pereyra RT, Mehlig B, Jonsson PR, Johannesson K. Neutral processes forming large clones during colonization of new areas. J Evol Biol 2017; 30:1544-1560. [PMID: 28557006 DOI: 10.1111/jeb.13124] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 04/28/2017] [Accepted: 05/24/2017] [Indexed: 01/16/2023]
Abstract
In species reproducing both sexually and asexually clones are often more common in recently established populations. Earlier studies have suggested that this pattern arises due to natural selection favouring generally or locally successful genotypes in new environments. Alternatively, as we show here, this pattern may result from neutral processes during species' range expansions. We model a dioecious species expanding into a new area in which all individuals are capable of both sexual and asexual reproduction, and all individuals have equal survival rates and dispersal distances. Even under conditions that favour sexual recruitment in the long run, colonization starts with an asexual wave. After colonization is completed, a sexual wave erodes clonal dominance. If individuals reproduce more than one season, and with only local dispersal, a few large clones typically dominate for thousands of reproductive seasons. Adding occasional long-distance dispersal, more dominant clones emerge, but they persist for a shorter period of time. The general mechanism involved is simple: edge effects at the expansion front favour asexual (uniparental) recruitment where potential mates are rare. Specifically, our model shows that neutral processes (with respect to genotype fitness) during the population expansion, such as random dispersal and demographic stochasticity, produce genotype patterns that differ from the patterns arising in a selection model. The comparison with empirical data from a post-glacially established seaweed species (Fucus radicans) shows that in this case, a neutral mechanism is strongly supported.
Collapse
Affiliation(s)
- M Rafajlović
- Department of Physics, University of Gothenburg, Gothenburg, Sweden
- The Linnaeus Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden
| | - D Kleinhans
- The Linnaeus Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - C Gulliksson
- Department of Applied Physics, Chalmers University of Technology, Gothenburg, Sweden
| | - J Fries
- Department of Applied Physics, Chalmers University of Technology, Gothenburg, Sweden
| | - D Johansson
- The Linnaeus Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden
- Department of Biological and Environmental Sciences, University of Gothenburg, Tjärnö, Strömstad, Sweden
| | - A Ardehed
- The Linnaeus Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden
- Department of Biological and Environmental Sciences, University of Gothenburg, Tjärnö, Strömstad, Sweden
| | - L Sundqvist
- The Linnaeus Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - R T Pereyra
- The Linnaeus Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden
- Department of Marine Sciences, University of Gothenburg, Tjärnö, Strömstad, Sweden
| | - B Mehlig
- Department of Physics, University of Gothenburg, Gothenburg, Sweden
- The Linnaeus Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden
| | - P R Jonsson
- The Linnaeus Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden
- Department of Marine Sciences, University of Gothenburg, Tjärnö, Strömstad, Sweden
| | - K Johannesson
- The Linnaeus Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden
- Department of Marine Sciences, University of Gothenburg, Tjärnö, Strömstad, Sweden
| |
Collapse
|