1
|
Gunn JC, Christensen BM, Bueno EM, Cohen ZP, Kissonergis AS, Chen YH. Agricultural insect pests as models for studying stress-induced evolutionary processes. INSECT MOLECULAR BIOLOGY 2024; 33:432-443. [PMID: 38655882 DOI: 10.1111/imb.12915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/14/2024] [Indexed: 04/26/2024]
Abstract
Agricultural insect pests (AIPs) are widely successful in adapting to natural and anthropogenic stressors, repeatedly overcoming population bottlenecks and acquiring resistance to intensive management practices. Although they have been largely overlooked in evolutionary studies, AIPs are ideal systems for understanding rapid adaptation under novel environmental conditions. Researchers have identified several genomic mechanisms that likely contribute to adaptive stress responses, including positive selection on de novo mutations, polygenic selection on standing allelic variation and phenotypic plasticity (e.g., hormesis). However, new theory suggests that stress itself may induce epigenetic modifications, which may confer heritable physiological changes (i.e., stress-resistant phenotypes). In this perspective, we discuss how environmental stress from agricultural management generates the epigenetic and genetic modifications that are associated with rapid adaptation in AIPs. We summarise existing evidence for stress-induced evolutionary processes in the context of insecticide resistance. Ultimately, we propose that studying AIPs offers new opportunities and resources for advancing our knowledge of stress-induced evolution.
Collapse
Affiliation(s)
- Joe C Gunn
- Department of Plant and Soil Science, University of Vermont, Burlington, Vermont, USA
| | - Blair M Christensen
- Department of Plant and Soil Science, University of Vermont, Burlington, Vermont, USA
| | - Erika M Bueno
- Department of Plant and Soil Science, University of Vermont, Burlington, Vermont, USA
| | - Zachary P Cohen
- Insect Control and Cotton Disease Research, USDA ARS, College Station, Texas, USA
| | | | - Yolanda H Chen
- Department of Plant and Soil Science, University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
2
|
Qu C, Li Y, Zhan Q, Wang J, Luo C, Guedes RNC, Wang R. Tetraniliprole risk assessment: Unveiling a hidden threat for managing a generalist herbivore. ENVIRONMENTAL RESEARCH 2024; 256:119273. [PMID: 38821465 DOI: 10.1016/j.envres.2024.119273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Insecticide resistance poses a significant challenge in managing generalist herbivores such as the tobacco cutworm (TCW), Spodoptera litura. This study investigates the potential risks associated with using the novel diamide insecticide tetraniliprole to control TCW. A tetraniliprole-resistant strain was developed through twelve generations of laboratory selection, indicating an intermediate risk of resistance development. Field monitoring in China revealed a significant incidence of resistance, particularly in the Nanchang (NC) population (>100-fold). Tetraniliprole showed moderate to high cross-resistance to multiple insecticides and was autosomally inherited with incomplete dominance, controlled by multiple genes, some of which belong to the cytochrome P450 family associated with enhanced detoxification. Life table studies indicated transgenerational hormesis, stimulating TCW female fecundity and increasing population net reproduction rates (R0). These findings suggest a potential for pest resurgence under tetraniliprole use. The integrated risk assessment provides a basis for the sustainable management of TCW using tetraniliprole.
Collapse
Affiliation(s)
- Cheng Qu
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China; Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Beijing, 100097, China
| | - Yunyi Li
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Qianyuan Zhan
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jinda Wang
- National Engineering Research Center of Sugarcane, Fujian Agricultural and Forestry University, Fuzhou, 350002, China.
| | - Chen Luo
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Raul Narciso C Guedes
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Ran Wang
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China; Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Beijing, 100097, China.
| |
Collapse
|
3
|
Silva APN, Carvalho GA, Haddi K. The interplay between temperature and an insecticide mixture modulates the stimulatory response of sublethally exposed Myzus persicae. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:818-829. [PMID: 38990494 DOI: 10.1007/s10646-024-02780-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/01/2024] [Indexed: 07/12/2024]
Abstract
Temperature can interact with chemical pesticides and modulate their toxicity. Sublethal exposure to pesticides is known to trigger hormetic responses in pests. However, the simultaneous effects of temperature and sublethal exposure to single or mixture-based insecticides on the insects' stimulatory responses are not frequently considered in toxicological studies. Here we investigated the combined effects of temperature on the lethal and sublethal responses of the green peach aphid Myzus persicae after exposure to commercial formulations of a neonicotinoid (thiamethoxam) and a pyrethroid (lambda-cyhalothrin) and their mixture. Firstly, the concentration-response curves of the insecticides were determined under four temperatures (15 °C, 20 °C, 25 °C, and 28 °C) by the leaf dipping method. Subsequently, the sublethal concentrations C0, CL1, CL5, CL10, CL15, CL20, and CL30 were selected to assess sublethal effects on aphids' longevity and reproduction under the same temperatures. The results showed that the mixture of thiamethoxam + lambda-cyhalothrin caused greater toxicity to aphids compared to the formulations with each active ingredient alone and that the toxicity was higher at elevated temperatures. Furthermore, the exposure to low concentrations of the mixture (thiamethoxam + lambda-cyhalothrin) and the separated insecticides induced stimulatory responses in the longevity and fecundity of exposed aphid females, but the occurrence of such hormetic responses depended on the insecticide type, its sublethal concentration, and the temperature as well as their interactions.
Collapse
Affiliation(s)
- Ana Paula Nascimento Silva
- Laboratory of Molecular Entomology and Ecotoxicology, Department of Entomology, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
| | - Geraldo Andrade Carvalho
- Laboratory of Ecotoxicology and Integrated Pest Management, Department of Entomology, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
| | - Khalid Haddi
- Laboratory of Molecular Entomology and Ecotoxicology, Department of Entomology, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil.
| |
Collapse
|
4
|
Metabolomic Analysis Reveals the Effect of Insecticide Chlorpyrifos on Rice Plant Metabolism. Metabolites 2022; 12:metabo12121289. [PMID: 36557326 PMCID: PMC9786318 DOI: 10.3390/metabo12121289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Pesticides as important agricultural inputs play a vital role in protecting crop plants from diseases and pests; however, the effect of pesticides on crop plant physiology and metabolism is still undefined. In this study, the effect of insecticide chlorpyrifos at three doses on rice plant physiology and metabolism was investigated. Our results revealed that chlorpyrifos cause oxidative stress in rice plants and even inhibit plant growth and the synthesis of protein and chlorophyll at high doses. The metabolomic results suggested that chlorpyrifos could affect the metabolic profiling of rice tissues and a total of 119 metabolites with significant changes were found, mainly including organic acids, amino acids, lipids, polyphenols, and flavonoids. Compared to the control, the content of glutamate family amino acids were significantly disturbed by chlorpyrifos, where defense-related proline and glutathione were significantly increased; however, glutamic acid, N-acetyl-glutamic acid and N-methyl-glutamic acid were significantly decreased. Many unsaturated fatty acids, such as linolenic acid and linoleic acid, and their derivatives lysophospholipids and phospholipids, were significantly accumulated in chlorpyrifos groups, which could act as osmolality substances to help rice cells relieve chlorpyrifos stress. Three organic acids, aminobenzoic acid, quinic acid, and phosphoenolpyruvic acid, involved in plant defenses, were significantly accumulated with the fold change ranging from 1.32 to 2.19. In addition, chlorpyrifos at middle- and high-doses caused the downregulation of most flavonoids. Our results not only revealed the effect of insecticide chlorpyrifos on rice metabolism, but also demonstrated the value of metabolomics in elucidating the mechanisms of plant responses to stresses.
Collapse
|
5
|
Liu KX, Guo Y, Zhang CX, Xue CB. Sublethal effects and reproductive hormesis of emamectin benzoate on Plutella xylostella. Front Physiol 2022; 13:1025959. [PMID: 36338483 PMCID: PMC9627195 DOI: 10.3389/fphys.2022.1025959] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/10/2022] [Indexed: 12/02/2022] Open
Abstract
The diamondback moth (DBM), Plutella xylostella L., is an important pest of cruciferous vegetables, and population control mainly depends on chemical pesticides. Emamectin benzoate is a highly effective insecticide used for controlling DBM. However, it is unknown how the sublethal effects of low concentration residues of emamectin benzoate on DBM. So the population development sublethal effects of emamectin benzoate, at LC5, LC10, and LC20 with concentrations of 0.014 mg/L, 0.024 mg/L and 0.047 mg/L, respectively, on adult DBM and their progeny were investigated in this study. The pupal weight, pupal period, female fecundity, and vitellin content of the F0 DBM generation increased significantly compared to the control. And the single female oviposition number of DBM was increased by 20.21% with LC20 treatment. The pupation rate, adult longevity and ovariole length of the treatment groups decreased significantly. The fecundity of DBM in the treatment groups increased, and this increased the population by a presumptive 13.84%. Treatment also led to the shortening of ovarioles and the reduction of egg hatching, and increased pupal weight in the F1 generation. We concluded that the effects of sublethal/low concentration emamectin benzoate on the different life stages of DBM were variable, and the reproductive hormesis on DBM adults were attractive findings.
Collapse
|
6
|
Rix RR, Cutler GC. Review of molecular and biochemical responses during stress induced stimulation and hormesis in insects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154085. [PMID: 35218848 DOI: 10.1016/j.scitotenv.2022.154085] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
The biphasic hormetic response to stress, defined by low-dose stimulation and high-dose inhibition is frequently observed in insects. Various molecular and biochemical responses associated with hormesis in insects have been reported in many studies, but no synthesis of all these findings has been undertaken. We conducted a systematic literature review, analyzing papers demonstrating phenotypic stimulatory effect(s) following exposure to stress where molecular or biochemical response(s) were also examined. Responses observed included stimulation of reproduction, survival and longevity, growth and development, and tolerance to temperature, chemical, or starvation and desiccation, in response to stressors including pesticides, oxidative stress, temperature, crowding and starvation, and radiation. Phenotypic stimulation ranged from <25% increased above controls to >100%. Reproductive stimulation was frequently <25% increased above controls, while stimulated temperature tolerance was frequently >100% increased. Molecular and biochemical responses had obvious direct connections to phenotypic responses in many cases, although not in all instances. Increased expression of heat shock proteins occurred in association with stimulated temperature tolerance, and increased expression of detoxification genes with stimulated pesticide or chemical tolerance, but also stimulated reproduction. Changes in the expression or activity of antioxidants were frequently associated with stimulation of longevity and reproduction. Stress induced changes in vitellogenin and juvenile hormone and genes in the IIS/TOR signalling pathway - which are directly responsible for regulating growth, development, and reproduction - were also reported. Our analysis showed that coordination of expression of genes or proteins associated with protection from oxidative stress and DNA and protein damage is important in the hormetic responses of insects.
Collapse
Affiliation(s)
- Rachel R Rix
- Department of Plant, Food, and Environmental Science, Faculty of Agriculture, Dalhousie University, PO Box 550, Truro, NS B2N 5E3, Canada.
| | - G Christopher Cutler
- Department of Plant, Food, and Environmental Science, Faculty of Agriculture, Dalhousie University, PO Box 550, Truro, NS B2N 5E3, Canada.
| |
Collapse
|
7
|
Cutler GC, Amichot M, Benelli G, Guedes RNC, Qu Y, Rix RR, Ullah F, Desneux N. Hormesis and insects: Effects and interactions in agroecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:153899. [PMID: 35181361 DOI: 10.1016/j.scitotenv.2022.153899] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Insects in agroecosystems contend with many stressors - e.g., chemicals, heat, nutrient deprivation - that are often encountered at low levels. Exposure to mild stress is now well known to induce hormetic (stimulatory) effects in insects, with implications for insect management, and ecological structure and function in agroecosystems. In this review, we examine the major ecological niches insects occupy or guilds to which they belong in agroecosystems and how hormesis can manifest within and across these groups. The mechanistic underpinnings of hormesis in insects are starting to become established, explaining the many phenotypic hormetic responses observed in insect reproduction, development, and behavior. Whereas potential effects on insect populations are well supported in laboratory experiments, field-based hypothesis-driven research on hormesis is greatly lacking. Furthermore, because most ecological paradigms are founded within the context of communities, entomological agroecologists interested in hormesis need to 'level up' and test hypotheses that explore effects on species interactions, and community structure and functioning. Embedded in this charge is to continue experimentation on herbivorous pest species while shifting more focus towards insect natural enemies, pollinators, and detritivores - guilds that play crucial roles in highly functioning agroecosystems that have been understudied in hormesis research. Important areas for future insect agroecology research on hormesis are discussed.
Collapse
Affiliation(s)
- G Christopher Cutler
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, PO Box 550, Truro, NS B2N 5E3, Canada.
| | - Marcel Amichot
- Université Côte d'Azur, INRAE, CNRS, UMR ISA, 06000 Nice, France.
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy.
| | - Raul Narciso C Guedes
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil.
| | - Yanyan Qu
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China.
| | - Rachel R Rix
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, PO Box 550, Truro, NS B2N 5E3, Canada.
| | - Farman Ullah
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Nicolas Desneux
- Université Côte d'Azur, INRAE, CNRS, UMR ISA, 06000 Nice, France.
| |
Collapse
|
8
|
Navarro-Roldán MA, Bosch D, Gemeno C, Siegwart M. Enzymatic detoxification strategies for neurotoxic insecticides in adults of three tortricid pests. BULLETIN OF ENTOMOLOGICAL RESEARCH 2020; 110:144-154. [PMID: 31218990 DOI: 10.1017/s0007485319000415] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We examined the role of the most important metabolic enzyme families in the detoxification of neurotoxic insecticides on adult males and females from susceptible populations of Cydia pomonella (L.), Grapholita molesta (Busck), and Lobesia botrana (Denis & Schiffermüller). The interaction between the enzyme families - carboxylesterases (EST), glutathione-S-transferases (GST), and polysubstrate monooxygenases (PSMO) - with the insecticides - chlorpyrifos, λ-cyhalothrin, and thiacloprid - was studied. Insect mortality arising from the insecticides, with the application of enzyme inhibitors - S,S,S-tributyl phosphorotrithioate (DEF), diethyl maleate (DEM), and piperonyl butoxide (PBO) - was first determined. The inhibitors' influence on EST, GST, and PSMO activity was quantified. EST and PSMO (the phase-I enzymatic activities) were involved in the insecticide detoxification in the three species for both sexes, highlighting the role of EST, whereas GST (phase-II enzymes) was involved only in G. molesta insecticide detoxification. L. botrana exhibited, in general, the highest level of enzymatic activity, with a significantly higher EST activity compared with the other species. It was the only species with differences in the response between sexes, with higher GST and PSMO activity in females than in males, which can be explained as the lower susceptibility of the females to the tested insecticides. A positive correlation between PSMO activity and the thiacloprid LD50s in the different species-sex groups was observed explaining the species-specific differences in susceptibility to the product reported in a previous study.
Collapse
Affiliation(s)
- M A Navarro-Roldán
- Department of Crop and Forest Sciences, University of Lleida (UdL), 25198-Lleida, Spain
| | - D Bosch
- Department of Sustainable Crop Protection, Food and Agriculture Research Institute (IRTA)25198-Lleida,Spain
| | - C Gemeno
- Department of Crop and Forest Sciences, University of Lleida (UdL), 25198-Lleida, Spain
| | - M Siegwart
- Agronomic National Research Institute (INRA), UR 1115 PSH, Plantes et Systèmes de culture Horticoles, 84914-Avignon, France
| |
Collapse
|
9
|
Hussain M, Akutse KS, Lin Y, Chen S, Huang W, Zhang J, Idrees A, Qiu D, Wang L. Susceptibilities of Candidatus Liberibacter asiaticus-infected and noninfected Diaphorina citri to entomopathogenic fungi and their detoxification enzyme activities under different temperatures. Microbiologyopen 2018; 7:e00607. [PMID: 29577643 PMCID: PMC6291790 DOI: 10.1002/mbo3.607] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 12/22/2022] Open
Abstract
Some entomopathogenic fungi species, Isaria fumosorosea, and Hirsutella citriformis were found to be efficient against the Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae). However, the susceptibility to these fungi increases when the psyllid infected with Candidatus Liberibacter asiaticus (Las), which is transmitted by D. citri and causes citrus greening disease. In this study, we examined the Las-infected and Las-uninfected D. citri susceptibility to entomopathogenic fungi at different temperature regimes (5-40°C). When D. citri adults exposed to cold temperature (5°C), they showed less susceptibility to entomopathogenic fungi as compared with control (27°C). Irrespective of infection with Las, a significantly positive correlation was observed between temperature and percentage mortality caused by different isolates of I. fumosorosea, 3A Ifr, 5F Ifr, PS Ifr, and H. citriformis isolates, HC3D and 2H. In contrast, a significantly negative correlation was found between temperature and percentage mortality for 3A Ifr for both Las-infected and Las-uninfected psyllids. Detoxification enzymes, Glutathione S-transferase levels in D. citri showed a negative correlation, whereas cytochrome P450 and general esterase levels were not correlated with changes in temperature. These findings revealed that detoxification enzymes and general esterase levels are not correlated with altered susceptibility to entomopathogenic fungi at the different temperature regimes. Conclusively, temperature fluctuations tested appear to be a significant factor impacting the management strategies of D. citri using entomopathogenic fungi.
Collapse
Affiliation(s)
- Mubasher Hussain
- Plant Protection CollegeFujian Agriculture and Forestry UniversityFuzhouChina
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhou350002China
- College of HorticultureFujian Agriculture and Forestry UniversityFuzhouChina
- Key Laboratory of Biopesticide and Chemical BiologyMinistry of EducationFuzhouChina
| | - Komivi Senyo Akutse
- Plant Protection CollegeFujian Agriculture and Forestry UniversityFuzhouChina
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhou350002China
- Key Laboratory of Biopesticide and Chemical BiologyMinistry of EducationFuzhouChina
- International Centre of Insect Ecology and PhysiologyNairobiKenya
| | - Yongwen Lin
- Plant Protection CollegeFujian Agriculture and Forestry UniversityFuzhouChina
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhou350002China
- Key Laboratory of Biopesticide and Chemical BiologyMinistry of EducationFuzhouChina
| | - Shiman Chen
- Plant Protection CollegeFujian Agriculture and Forestry UniversityFuzhouChina
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhou350002China
- Key Laboratory of Biopesticide and Chemical BiologyMinistry of EducationFuzhouChina
| | - Wei Huang
- Plant Protection CollegeFujian Agriculture and Forestry UniversityFuzhouChina
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhou350002China
- Key Laboratory of Biopesticide and Chemical BiologyMinistry of EducationFuzhouChina
| | - Jinguan Zhang
- Plant Protection CollegeFujian Agriculture and Forestry UniversityFuzhouChina
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhou350002China
- Key Laboratory of Biopesticide and Chemical BiologyMinistry of EducationFuzhouChina
| | - Atif Idrees
- Plant Protection CollegeFujian Agriculture and Forestry UniversityFuzhouChina
- Institute of Beneficial InsectsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Dongliang Qiu
- College of HorticultureFujian Agriculture and Forestry UniversityFuzhouChina
| | - Liande Wang
- Plant Protection CollegeFujian Agriculture and Forestry UniversityFuzhouChina
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhou350002China
- Key Laboratory of Biopesticide and Chemical BiologyMinistry of EducationFuzhouChina
| |
Collapse
|
10
|
Liu MG, Jiang CX, Mao M, Liu C, Li Q, Wang XG, Yang QF, Wang HJ. Effect of the Insecticide Dinotefuran on the Ultrastructure of the Flight Muscle of Female Sogatella furcifera (Hemiptera: Delphacidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2017; 110:632-640. [PMID: 28334253 DOI: 10.1093/jee/tow320] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Indexed: 06/06/2023]
Abstract
Sogatella furcifera Horváth (Hemiptera: Delphacidae), is a major migratory pest of rice crops in Asia. The ultrastructure of the flight muscle directly affects the flight ability of insects. The ultrastructure of the flight muscle of some insects can be affected by insecticides. However, the ultrastructure of the flight muscle of S. furcifera and the effect of insecticides on the flight muscle of S. furcifera are not well understood. The present study was conducted to determine the effect of the insecticide dinotefuran on the ultrastructure of the flight muscle of S. furcifera females. In this study, the cross-sectional area and the diameter of the myofibril cross-sections of dinotefuran-treated S. furcifera females increased with the number of days after emergence (DAE), and they were higher than in untreated females. The sarcomere length of myofibrils increased with the number of DAE, and it differed from that of the untreated females. On the first day after emergence, the higher the concentration of dinotefuran, the smaller was the extent of decrease. On the third day after emergence, the higher the concentration of dinotefuran, the larger was the extent of enhancement. For the percentage of mitochondria, those of LC10 and LC20 dinotefuran-treated S. furcifera females increased with the number of DAE and were higher than in untreated females. LC10 dinotefuran-treated S. furcifera females exhibited the largest increase. Thus, our results suggest that the flight ability of S. furcifera increased with time. Some concentrations of dinotefuran can enhance the flight capacity of S. furcifera.
Collapse
Affiliation(s)
- M G Liu
- College of Agronomy, Sichuan Agricultural University, 211 Huimin Rd., Wenjiang District, Chengdu, Sichuan 611130, P.R. China (; ; ; ; ; ; ; )
| | - C X Jiang
- College of Agronomy, Sichuan Agricultural University, 211 Huimin Rd., Wenjiang District, Chengdu, Sichuan 611130, P.R. China (; ; ; ; ; ; ; )
| | - M Mao
- College of Agronomy, Sichuan Agricultural University, 211 Huimin Rd., Wenjiang District, Chengdu, Sichuan 611130, P.R. China (; ; ; ; ; ; ; )
| | - C Liu
- College of Agronomy, Sichuan Agricultural University, 211 Huimin Rd., Wenjiang District, Chengdu, Sichuan 611130, P.R. China (; ; ; ; ; ; ; )
| | - Q Li
- College of Agronomy, Sichuan Agricultural University, 211 Huimin Rd., Wenjiang District, Chengdu, Sichuan 611130, P.R. China (; ; ; ; ; ; ; )
| | - X G Wang
- College of Agronomy, Sichuan Agricultural University, 211 Huimin Rd., Wenjiang District, Chengdu, Sichuan 611130, P.R. China (; ; ; ; ; ; ; )
| | - Q F Yang
- College of Agronomy, Sichuan Agricultural University, 211 Huimin Rd., Wenjiang District, Chengdu, Sichuan 611130, P.R. China (; ; ; ; ; ; ; )
| | - H J Wang
- College of Agronomy, Sichuan Agricultural University, 211 Huimin Rd., Wenjiang District, Chengdu, Sichuan 611130, P.R. China (; ; ; ; ; ; ; )
| |
Collapse
|