1
|
Yesaya A, Zhang L, Wu C, Fu Y, Zhang J, An J, Xiao Y. The chromosomal-scale genome sequencing and assembly of Athetis lepigone. Sci Data 2024; 11:338. [PMID: 38580759 PMCID: PMC10997617 DOI: 10.1038/s41597-024-03136-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/11/2024] [Indexed: 04/07/2024] Open
Abstract
Athetis lepigone is an emerging highly polyphagous insect pest reported to cause crop damage in several European and Asian countries. However, our understanding of its genetic adaptation mechanisms has been limited due to lack of high-quality genetic resources. In this study, we present a chromosomal-level genome of A. lepigone, representing the first species in the genus of Athetis. We employed PacBio long-read sequencing and Hi-C technologies to generate 612.49 Mb genome assembly which contains 42.43% repeat sequences with a scaffold N50 of 20.9 Mb. The contigs were successfully clustered into 31 chromosomal-size scaffolds with 37% GC content. BUSCO assessment revealed a genome completeness of 97.4% with 96.3 identified as core Arthropoda single copy orthologs. Among the 17,322 genes that were predicted, 15,965 genes were functionally annotated, representing a coverage of 92.17%. Furthermore, we revealed 106 P450, 37 GST, 27 UGT, and 74 COE gene families in the genome of A. lepigone. This genome provides a significant and invaluable genomic resource for further research across the entire genus of Athetis.
Collapse
Affiliation(s)
- Alexander Yesaya
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Lei Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Chao Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Yiheng Fu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, 530005, Nanning, China
| | - Ji Zhang
- Sanya Nanfan Research Institute and College of Tropical Crops, Hainan University, Sanya, 572025, China
| | - Jingjie An
- Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences, Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs, IPM Innovation Canter of Hebei Province, International Science and Technology Joint Research Canter on IPM of Hebei Province, Baoding, China
| | - Yutao Xiao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China.
| |
Collapse
|
2
|
Wang X, Lu B, Shao L, Li Z, Ali A, Yu F, Fu Z, Sun F. Genome-wide SNPs reveal the fine-scale population structure of Laodelphax striatellus in China using double-digest restriction site-associated DNA sequencing. Genomics 2022; 114:110329. [PMID: 35278617 DOI: 10.1016/j.ygeno.2022.110329] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 03/02/2022] [Accepted: 03/06/2022] [Indexed: 01/14/2023]
Abstract
The small brown planthopper (SBPH), Laodelphax striatellus (Fallén) is one of the most destructive rice pests and has caused serious economic losses in China. To clarify the genetic differentiation and population genetic structure of this insect pest, we investigated the genomic polymorphisms, genetic differentiation, and phylogeography of 31 SBPH populations from 28 sampling sites from three climatic zones of China using double-digest restriction site-associated DNA sequencing (ddRADseq). In total, 2,813,221,369 high-quality paired-end reads from 306 individuals and 1925 single nucleotide polymorphisms (SNPs) were obtained. Low levels of genetic diversity and significant genetic differentiation were observed among the SBPH populations, and three genetic clusters were detected in China. Neutrality tests and bottleneck analysis provided strong evidence for recent rapid expansion with a severe bottleneck in most populations. Our work provides new insights into the genetics of the SBPH and will contribute to the development of effective management strategies for this pest.
Collapse
Affiliation(s)
- Xingya Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning 110866, PR China
| | - Bin Lu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, PR China
| | - Lingyun Shao
- Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning 110161, PR China
| | - Zhiqiang Li
- Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning 110161, PR China
| | - Abid Ali
- Department of Entomology, University of Agriculture, Faisalabad, Punjab 38040, Pakistan
| | - Fengquan Yu
- Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning 110161, PR China
| | - Zhanyu Fu
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning 110866, PR China
| | - Fuyu Sun
- Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning 110161, PR China.
| |
Collapse
|
3
|
Yang H, You CJ, Tsui CKM, Tembrock LR, Wu ZQ, Yang DP. Phylogeny and biogeography of the Japanese rhinoceros beetle, Trypoxylus dichotomus (Coleoptera: Scarabaeidae) based on SNP markers. Ecol Evol 2021; 11:153-173. [PMID: 33437420 PMCID: PMC7790660 DOI: 10.1002/ece3.6982] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/23/2020] [Accepted: 10/16/2020] [Indexed: 12/05/2022] Open
Abstract
The Japanese rhinoceros beetle Trypoxylus dichotomus is one of the largest beetle species in the world and is commonly used in traditional Chinese medicine. Ten subspecies of T. dichotomus and a related Trypoxylus species (T. kanamorii) have been described throughout Asia, but their taxonomic delimitations remain problematic. To clarify issues such as taxonomy, and the degree of genetic differentiation of Trypoxylus populations, we investigated the genetic structure, genetic variability, and phylogeography of 53 specimens of Trypoxylus species from 44 locations in five Asian countries (China, Japan, Korea, Thailand, and Myanmar). Using specific-locus amplified fragment sequencing (SLAF-seq) techniques, we developed 330,799 SLAFs over 114.16M reads, in turn yielding 46,939 high-resolution single nucleotide polymorphisms (SNPs) for genotyping. Phylogenetic analysis of SNPs indicated the presence of three distinct genetic groups, suggesting that the various subspecies could be treated as three groups of populations. PCA and ADMIXTURE analysis also identified three genetic clusters (North, South, West), which corresponded to their locations, suggesting that geographic factors were important in maintaining within population homogeneity and between population divergence. Analyses of SNP data confirmed the monophyly of certain subspecies on islands, while other subspecies (e.g., T. d. septentrionalis) were found to be polyphyletic and nested in more than one lineage. AMOVA demonstrated high level of differentiation among populations/groups. Also, pairwise F ST values revealed high differentiation, particularly between South and West, as well as between North and South. Despite the differentiation, measurable gene flow was inferred between genetic clusters but at varying rates and directions. Our study demonstrated that SLAF-seq derived markers outperformed 16S and COII sequences and provided improved resolution of the genetic differentiation of rhinoceros beetle populations from a large part of the species' range.
Collapse
Affiliation(s)
- Huan Yang
- School of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhouChina
| | - Chong Juan You
- Beijing Key Laboratory for Forest Pest ControlBeijing Forestry UniversityBeijingChina
| | - Clement K. M. Tsui
- Department of PathologySidra MedicineDohaQatar
- Department of Pathology and Laboratory MedicineWeill Cornell Medicine‐QatarAr‐RayyanQatar
- Division of Infectious DiseasesFaculty of MedicineUniversity of British ColumbiaVancouverBCCanada
| | - Luke R. Tembrock
- Department of Agricultural BiologyColorado State UniversityFort CollinsCOUSA
| | - Zhi Qiang Wu
- Shenzhen BranchGuangdong Laboratory for Lingnan Modern AgricultureGenome Analysis Laboratory of the Ministry of AgricultureAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | - De Po Yang
- School of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhouChina
| |
Collapse
|
4
|
Large-scale genetic admixture suggests high dispersal in an insect pest, the apple fruit moth. PLoS One 2020; 15:e0236509. [PMID: 32785243 PMCID: PMC7423104 DOI: 10.1371/journal.pone.0236509] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/07/2020] [Indexed: 11/25/2022] Open
Abstract
Knowledge about population genetic structure and dispersal capabilities is important for the development of targeted management strategies for agricultural pest species. The apple fruit moth, Argyresthia conjugella (Lepidoptera, Yponomeutidae), is a pre-dispersal seed predator. Larvae feed on rowanberries (Sorbus aucuparia), and when rowanberry seed production is low (i.e., inter-masting), the moth switches from laying eggs in rowanberries to apples (Malus domestica), resulting in devastating losses in apple crops. Using genetic methods, we investigated if this small moth expresses any local genetic structure, or alternatively if gene flow may be high within the Scandinavian Peninsula (~850.000 km2, 55o - 69o N). Genetic diversity was found to be high (n = 669, mean He = 0.71). For three out of ten tetranucleotide STRs, we detected heterozygote deficiency caused by null alleles, but tests showed little impact on the overall results. Genetic differentiation between the 28 sampling locations was very low (average FST = 0.016, P < 0.000). Surprisingly, we found that all individuals could be assigned to one of two non-geographic genetic clusters, and that a third, geographic cluster was found to be associated with 30% of the sampling locations, with weak but significant signals of isolation-by-distance. Conclusively, our findings suggest wind-aided dispersal and spatial synchrony of both sexes of the apple fruit moth over large areas and across very different climatic zones. We speculate that the species may recently have had two separate genetic origins caused by a genetic bottleneck after inter-masting, followed by rapid dispersal and homogenization of the gene pool across the landscape. We suggest further investigations of spatial genetic similarities and differences of the apple fruit moth at larger geographical scales, through life-stages, across inter-masting, and during attacks by the parasitoid wasp (Microgaster politus).
Collapse
|
5
|
Liu Y, Chen L, Duan XZ, Zhao DS, Sun JT, Hong XY. Genome-Wide Single Nucleotide Polymorphisms are Robust in Resolving Fine-Scale Population Genetic Structure of the Small Brown Planthopper, Laodelphax striatellus (Fallén) (Hemiptera: Delphacidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:2362-2368. [PMID: 31145796 DOI: 10.1093/jee/toz145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Indexed: 06/09/2023]
Abstract
Deciphering genetic structure and inferring migration routes of insects with high migratory ability have been challenging, due to weak genetic differentiation and limited resolution offered by traditional genotyping methods. Here, we tested the ability of double digest restriction-site associated DNA sequencing (ddRADseq)-based single nucleotide polymorphisms (SNPs) in revealing the population structure relative to 13 microsatellite markers by using four small brown planthopper populations as subjects. Using ddRADseq, we identified 230,000 RAD loci and 5,535 SNP sites, which were present in at least 80% of individuals across the four populations with a minimum sequencing depth of 10. Our results show that this large SNP panel is more powerful than traditional microsatellite markers in revealing fine-scale population structure among the small brown planthopper populations. In contrast to the mixed population structure suggested by microsatellites, discriminant analysis of principal components (DAPC) of the SNP dataset clearly separated the individuals into four geographic populations. Our results also suggest the DAPC analysis is more powerful than the principal component analysis (PCA) in resolving population genetic structure of high migratory taxa, probably due to the advantages of DAPC in using more genetic variation and the discriminant analysis function. Together, these results point to ddRADseq being a promising approach for population genetic and migration studies of small brown planthopper.
Collapse
Affiliation(s)
- Yan Liu
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Lei Chen
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xing-Zhi Duan
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Dian-Shu Zhao
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jing-Tao Sun
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | | |
Collapse
|