He HM, Tang JJ, Huang LL, Wu SH, Peng Y, Xue FS. Inheritance of key life-history traits in crosses between northern and southern populations of the cabbage beetle
Colaphellus bowringi (Coleoptera: Chrysomelidae).
BULLETIN OF ENTOMOLOGICAL RESEARCH 2021;
111:420-428. [PMID:
33583438 DOI:
10.1017/s000748532100002x]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A southern population (S) from Xiushui County (29°1'N, 114°4'E) and a northern population (N) from Shenyang city (41°48'N, 123°23'E) of the cabbage beetle, Colaphellus bowringi vary greatly in their life-history traits, and may serve as an excellent model with which to study the inheritance of life-history traits. In the present study, we performed intraspecific hybridization using the two populations, comparing the key life-history traits (fecundity, development time, body weight, growth rate, and sexual size dimorphism (SDD)) between the two populations (S♀ × S♂ and N♀ × N♂) and their two hybrid populations (S♀ × N♂ and N♀ × S♂ populations) at 19, 22, 25, and 28°C. Our results showed that there were significant differences in life-history traits between the two parental populations, with the S population having a significantly higher fecundity, shorter larval development time, larger body weight, higher growth rate, and greater weight loss during metamorphosis than the N population at almost all temperatures. However, these life-history traits in the two hybrid populations were intermediate between those of their parents. The life-history traits in the S × N and N × S populations more closely resembled those of the maternal S population and N population, respectively, showing maternal effects. Weight loss for both sexes was highest in the S population, followed by the S × N, N × S, and N populations at all temperatures, suggesting that larger pupae lost more weight during metamorphosis. The changes in SSD with temperature were similar between the S and the S × N populations and between the N and the N × S populations, also suggesting a maternal effect. Overall, our results showed no drastic effect of hybridization on C. bowringi, being neither negative (hybrid inferiority) nor positive (heterosis). Rather, the phenotypes of hybrids were intermediate between the phenotypes of their parents.
Collapse