1
|
Therrell BL, Padilla CD, Borrajo GJC, Khneisser I, Schielen PCJI, Knight-Madden J, Malherbe HL, Kase M. Current Status of Newborn Bloodspot Screening Worldwide 2024: A Comprehensive Review of Recent Activities (2020-2023). Int J Neonatal Screen 2024; 10:38. [PMID: 38920845 PMCID: PMC11203842 DOI: 10.3390/ijns10020038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 06/27/2024] Open
Abstract
Newborn bloodspot screening (NBS) began in the early 1960s based on the work of Dr. Robert "Bob" Guthrie in Buffalo, NY, USA. His development of a screening test for phenylketonuria on blood absorbed onto a special filter paper and transported to a remote testing laboratory began it all. Expansion of NBS to large numbers of asymptomatic congenital conditions flourishes in many settings while it has not yet been realized in others. The need for NBS as an efficient and effective public health prevention strategy that contributes to lowered morbidity and mortality wherever it is sustained is well known in the medical field but not necessarily by political policy makers. Acknowledging the value of national NBS reports published in 2007, the authors collaborated to create a worldwide NBS update in 2015. In a continuing attempt to review the progress of NBS globally, and to move towards a more harmonized and equitable screening system, we have updated our 2015 report with information available at the beginning of 2024. Reports on sub-Saharan Africa and the Caribbean, missing in 2015, have been included. Tables popular in the previous report have been updated with an eye towards harmonized comparisons. To emphasize areas needing attention globally, we have used regional tables containing similar listings of conditions screened, numbers of screening laboratories, and time at which specimen collection is recommended. Discussions are limited to bloodspot screening.
Collapse
Affiliation(s)
- Bradford L. Therrell
- Department of Pediatrics, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
- National Newborn Screening and Global Resource Center, Austin, TX 78759, USA
| | - Carmencita D. Padilla
- Department of Pediatrics, College of Medicine, University of the Philippines Manila, Manila 1000, Philippines;
| | - Gustavo J. C. Borrajo
- Detección de Errores Congénitos—Fundación Bioquímica Argentina, La Plata 1908, Argentina;
| | - Issam Khneisser
- Jacques LOISELET Genetic and Genomic Medical Center, Faculty of Medicine, Saint Joseph University, Beirut 1104 2020, Lebanon;
| | - Peter C. J. I. Schielen
- Office of the International Society for Neonatal Screening, Reigerskamp 273, 3607 HP Maarssen, The Netherlands;
| | - Jennifer Knight-Madden
- Caribbean Institute for Health Research—Sickle Cell Unit, The University of the West Indies, Mona, Kingston 7, Jamaica;
| | - Helen L. Malherbe
- Centre for Human Metabolomics, North-West University, Potchefstroom 2531, South Africa;
- Rare Diseases South Africa NPC, The Station Office, Bryanston, Sandton 2021, South Africa
| | - Marika Kase
- Strategic Initiatives Reproductive Health, Revvity, PL10, 10101 Turku, Finland;
| |
Collapse
|
2
|
Beigh M, Vagher J, Codden R, Maese LD, Cook S, Gammon A. Newborn Screening for Li-Fraumeni Syndrome: Patient Perspectives. RESEARCH SQUARE 2024:rs.3.rs-4351728. [PMID: 38798617 PMCID: PMC11118696 DOI: 10.21203/rs.3.rs-4351728/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Background Li-Fraumeni syndrome (LFS) is an inherited cancer predisposition syndrome with an estimated prevalence of 1 in 3,000-5,000 individuals. LFS poses a significant cancer risk throughout the lifespan, with notable cancer susceptibility in childhood. Despite being predominantly inherited, up to 20% of cases arise de novo. Surveillance protocols facilitate the reduction of mortality and morbidity through early cancer detection. While newborn screening (NBS) has proven effective in identifying newborns with rare genetic conditions, even those occurring as rarely as 1 in 185,000, its potential for detecting inherited cancer predispositions remains largely unexplored. Methods This survey-based study investigates perspectives toward NBS for LFS among individuals with and parents of children with LFS receiving care at single comprehensive cancer center in the U.S. Results All participants unanimously supported NBS for LFS (n = 24). Reasons included empowerment (83.3%), control (66.7%), and peace of mind (54.2%), albeit with concerns about anxiety (62.5%) and devastation (50%) related to receiving positive results. Participants endorsed NBS as beneficial for cancer detection and prevention (91.7%), research efforts (87.5%), and family planning (79.2%) but voiced apprehensions about the financial cost of cancer surveillance (62.5%), emotional burdens (62.5%), and insurance coverage and discrimination (54.2%). Approximately 83% of respondents believed that parental consent should be required to screen newborns for LFS. Conclusion This study revealed strong support for NBS for LFS despite the recognition of various perceived benefits and risks. These findings underscore the complex interplay between clinical, psychosocial, and ethical factors in considering NBS for LFS from the perspective of the LFS community.
Collapse
Affiliation(s)
| | | | - Rachel Codden
- Division of Epidemiology, Department of Internal Medicine, University of Utah
| | | | - Sabina Cook
- Utah Department of Health and Human Services
| | | |
Collapse
|
3
|
Ding S, Han L. Newborn screening for genetic disorders: Current status and prospects for the future. Pediatr Investig 2022; 6:291-298. [PMID: 36582269 PMCID: PMC9789938 DOI: 10.1002/ped4.12343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 07/27/2022] [Indexed: 11/05/2022] Open
Abstract
Newborn screening (NBS) is a public health service aimed at identifying infants with severe genetic disorders, thus providing effective treatment early enough to prevent or ameliorate the onset of symptoms. Current NBS uses biochemical analysis of dried blood spots, predominately with time-resolved fluorescence immunoassay and tandem mass spectrometry, which produces some false positives and false negatives. The application of enzymatic activity-based testing technology provides a reliable screening method for some disorders. Genetic testing is now commonly used for secondary or confirmatory testing after a positive result in some NBS programs. Recently, next-generation sequencing (NGS) has emerged as a robust tool that enables large panels of genes to be scanned together rapidly. Rapid advances in NGS emphasize the potential for genomic sequencing to improve NBS programs. However, some challenges still remain and require solution before this is applied for population screening.
Collapse
Affiliation(s)
- Si Ding
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute of Pediatric ResearchShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Lianshu Han
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute of Pediatric ResearchShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
4
|
Insights into National Laboratory Newborn Screening and Future Prospects. Medicina (B Aires) 2022; 58:medicina58020272. [PMID: 35208595 PMCID: PMC8879506 DOI: 10.3390/medicina58020272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/26/2022] [Accepted: 02/09/2022] [Indexed: 11/17/2022] Open
Abstract
Newborn screening (NBS) is a group of tests that check all newborns for certain rare conditions, covering several genetic or metabolic disorders. The laboratory NBS is performed through blood testing. However, the conditions that newborn babies are screened for vary from one country to another. Since NBS began in the 1960s, technological advances have enabled its expansion to include an increasing number of disorders, and there is a national trend to further expand the NBS program. The use of mass spectrometry (MS) for the diagnosis of inborn errors of metabolism (IEM) obviously helps in the expansion of the screening panels. This technology allows the detection of different metabolic disorders at one run, replacing the use of traditional techniques. Analysis of the targeted pathogenic gene variant is a routine application in the molecular techniques for the NBS program as a confirmatory testing to the positive laboratory screening results. Recently, a lot of molecular investigations, such as next generation sequencing (NGS), have been introduced in the routine NBS program. Nowadays, NGS techniques are widely used in the diagnosis of IMD where its results are rapid, confirmed and reliable, but, due to its uncertainties and the nature of IEM, it necessitates a holistic approach for diagnosis. However, various characteristics found in NGS make it a potentially powerful tool for NBS. A range of disorders can be analyzed with a single assay directly, and samples can reduce costs and can largely be automated. For the implementation of a robust technology such as NGS in a mass NBS program, the main focus should not be just technologically biased; it should also be tested for its long- and short-term impact on the family and the child. The crucial question here is whether large-scale genomic sequencing can provide useful medical information beyond what current NBS is already providing and at what economical and emotional cost? Currently, the topic of newborn genome sequencing as a public health initiative remains argumentative. Thus, this article seeks the answer to the question: NGS for newborn screening- are we there yet?
Collapse
|
5
|
Abstract
IMPORTANCE Genomic newborn screening (gNBS) may optimize the health and well-being of children and families. Screening programs are required to be evidence based, acceptable, and beneficial. OBJECTIVES To identify what has been discovered following the reporting of the first gNBS pilot projects and to provide a summary of key points for the design of gNBS. EVIDENCE REVIEW A systematic literature review was performed on April 14, 2021, identifying 36 articles that addressed the following questions: (1) what is the interest in and what would be the uptake of gNBS? (2) what diseases and genes should be included? (3) what is the validity and utility of gNBS? and (4) what are the ethical, legal, and social implications? Articles were only included if they generated new evidence; all opinion pieces were excluded. FINDINGS In the 36 articles included, there was high concordance, except for gene disease inclusion, which was highly variable. Key findings were the need for equitable access, appropriate educational materials, and informed and flexible consent. The process for selecting genes for testing should be transparent and reflect that parents value the certainty of prediction over actionability. Data should be analyzed in a way that minimizes uncertainty and incidental findings. The expansion of traditional newborn screening (tNBS) to identify more life-threatening and treatable diseases needs to be balanced against the complexity of consenting parents of newborns for genomic testing as well as the risk that overall uptake of tNBS may decline. The literature reflected that the right of a child to self-determination should be valued more than the possibility of the whole family benefiting from a newborn genomic test. CONCLUSIONS AND RELEVANCE The findings of this systematic review suggest that implementing gNBS will require a nuanced approach. There are gaps in our knowledge, such as the views of diverse populations, the capabilities of health systems, and health economic implications. It will be essential to rigorously evaluate outcomes and ensure programs can evolve to maximize benefit.
Collapse
Affiliation(s)
- Lilian Downie
- Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Jane Halliday
- Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Sharon Lewis
- Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - David J. Amor
- Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
- Royal Children’s Hospital, Melbourne, Victoria, Australia
- Victorian Clinical Genetics Services, Melbourne, Victoria, Australia
| |
Collapse
|
6
|
Remec ZI, Trebusak Podkrajsek K, Repic Lampret B, Kovac J, Groselj U, Tesovnik T, Battelino T, Debeljak M. Next-Generation Sequencing in Newborn Screening: A Review of Current State. Front Genet 2021; 12:662254. [PMID: 34122514 PMCID: PMC8188483 DOI: 10.3389/fgene.2021.662254] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/13/2021] [Indexed: 12/27/2022] Open
Abstract
Newborn screening was first introduced at the beginning of the 1960s with the successful implementation of the first phenylketonuria screening programs. Early expansion of the included disorders was slow because each additional disorder screened required a separate test. Subsequently, the technological advancements of biochemical methodology enabled the scaling-up of newborn screening, most notably with the implementation of tandem mass spectrometry. In recent years, we have witnessed a remarkable progression of high-throughput sequencing technologies, which has resulted in a continuous decrease of both cost and time required for genetic analysis. This has enabled more widespread use of the massive multiparallel sequencing. Genomic sequencing is now frequently used in clinical applications, and its implementation in newborn screening has been intensively advocated. The expansion of newborn screening has raised many clinical, ethical, legal, psychological, sociological, and technological concerns over time. This review provides an overview of the current state of next-generation sequencing regarding newborn screening including current recommendations and potential challenges for the use of such technologies in newborn screening.
Collapse
Affiliation(s)
- Ziga I. Remec
- Clinical Institute for Special Laboratory Diagnostics, University Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Katarina Trebusak Podkrajsek
- Clinical Institute for Special Laboratory Diagnostics, University Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, Institute of Biochemistry and Molecular Genetics, University of Ljubljana, Ljubljana, Slovenia
| | - Barbka Repic Lampret
- Clinical Institute for Special Laboratory Diagnostics, University Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Jernej Kovac
- Clinical Institute for Special Laboratory Diagnostics, University Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Urh Groselj
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Chair of Pediatrics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tine Tesovnik
- Clinical Institute for Special Laboratory Diagnostics, University Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Tadej Battelino
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Chair of Pediatrics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Marusa Debeljak
- Clinical Institute for Special Laboratory Diagnostics, University Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, Institute of Biochemistry and Molecular Genetics, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
7
|
Esquerda M, Palau F, Lorenzo D, Cambra FJ, Bofarull M, Cusi V, Interdisciplinar En Bioetica G. Ethical questions concerning newborn genetic screening. Clin Genet 2020; 99:93-98. [PMID: 32779199 DOI: 10.1111/cge.13828] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 11/26/2022]
Abstract
Newborn screening is a public health strategy used to identify certain diseases in the first days of life and, therefore, facilitate early treatment before the onset of symptoms. The decision of which diseases should be included in a screening goes beyond the medical perspective, including reasons for public health and health economics. There are a number of characteristics to include a disease in the screening, such as that the disorder must be a significant health problem, the natural history of the disease must be well known, a feasible and accurate test must be available, there must be a treatment that is most effective when applied before the onset of clinical symptoms and a health system must be in place that is capable of performing the procedure and subsequent monitoring. Currently, newborn screening programs are currently based on the use of biochemical markers that detect metabolites, hormones or proteins, but recently, the availability of new technology has allowed the possibility of a genetic screening. In addition to technical problems, the possibility of neonatal screening also presents a number of ethical problems. We identified and discussed six areas of particular concern: type of illness, overdiagnosis or overtreatment, information management and informed consent, data confidentiality and protection, justice and legal regulation.
Collapse
Affiliation(s)
- Montserrat Esquerda
- Institut Borja de Bioètica (Universitat Ramon LIuII); Universitat de Lleida - Facultat de Medicina, Barcelona, Spain
| | - Francesc Palau
- Hospital Sant Joan de Deu, Barcelona, Spain.,Fundacion Sant Joan de Deu, Barcelona, Spain
| | - David Lorenzo
- Institut Borja de Bioètica (Universitat Ramon LIuII); Sant Joan de Deu School of Nursing, Barcelona, Spain
| | - Francisco Jose Cambra
- Institut Borja de Bioètica (Universitat Ramon LIuII); Hospital Sant Joan de Deu, Barcelona, Spain
| | | | - Victoria Cusi
- Institut Borja de Bioètica (Universitat Ramon LIuII), Barcelona, Spain
| | | |
Collapse
|
8
|
La Cognata V, Guarnaccia M, Polizzi A, Ruggieri M, Cavallaro S. Highlights on Genomics Applications for Lysosomal Storage Diseases. Cells 2020; 9:E1902. [PMID: 32824006 PMCID: PMC7465195 DOI: 10.3390/cells9081902] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/14/2022] Open
Abstract
Lysosomal storage diseases (LSDs) are a heterogeneous group of rare multisystem genetic disorders occurring mostly in infancy and childhood, characterized by a gradual accumulation of non-degraded substrates inside the lysosome. Although the cellular pathogenesis of LSDs is complex and still not fully understood, the approval of disease-specific therapies and the rapid emergence of novel diagnostic methods led to the implementation of extensive national newborn screening (NBS) programs in several countries. In the near future, this will help the development of standardized workflows aimed to more timely diagnose these conditions. Hereby, we report an overview of LSD diagnostic process and treatment strategies, provide an update on the worldwide NBS programs, and discuss the opportunities and challenges arising from genomics applications in screening, diagnosis, and research.
Collapse
Affiliation(s)
- Valentina La Cognata
- Institute for Biomedical Research and Innovation, National Research Council, Via P. Gaifami 18, 95126 Catania, Italy; (V.L.C.); (M.G.)
| | - Maria Guarnaccia
- Institute for Biomedical Research and Innovation, National Research Council, Via P. Gaifami 18, 95126 Catania, Italy; (V.L.C.); (M.G.)
| | - Agata Polizzi
- Chair of Pediatrics, Department of Educational Sciences, University of Catania, Via Casa Nutrizione, 39, 95124 Catania, Italy;
| | - Martino Ruggieri
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, AOU “Policlinico”, PO “G. Rodolico”, Via S. Sofia, 78, 95123 Catania, Italy;
| | - Sebastiano Cavallaro
- Institute for Biomedical Research and Innovation, National Research Council, Via P. Gaifami 18, 95126 Catania, Italy; (V.L.C.); (M.G.)
| |
Collapse
|
9
|
|
10
|
Durie D, Yeh E, McIntosh N, Fisher L, Bulman DE, Birnboim HC, Chakraborty P, Al-Dirbashi OY. Quantification of DNA in Neonatal Dried Blood Spots by Adenine Tandem Mass Spectrometry. Anal Chem 2017; 90:801-806. [PMID: 29190072 DOI: 10.1021/acs.analchem.7b03265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Newborn screening programs have expanded to include molecular-based assays as first-tier tests and the success of these assays depends on the quality and yield of DNA extracted from neonatal dried blood spots (DBS). To meet high throughput and rapid turnaround time requirements, newborn screening laboratories adopted rapid DNA extraction methods that produce crude extracts. Quantification of DNA in neonatal DBS is not routinely performed due to technical challenges; however, this may enhance the performance of assays that are sensitive to amounts of input DNA. In this study, we developed a novel high throughput method to quantify total DNA in DBS. It is based on specific acid-catalyzed depurination of DNA followed by mass spectrometric quantification of adenine. The amount of adenine was used to calculate DNA quantity per 3.2 mm DBS. Reference intervals were established using archived, neonatal DBS (n = 501) and a median of 130.6 ng of DNA per DBS was obtained, which is in agreement with literature values. The intra- and interday variations were <15%. The limits of detection and quantification were 12.5 and 37.8 nmol/L adenine, respectively. We demonstrated that DNA from neonatal DBS can be successfully quantified in high throughput settings using instruments currently deployed in NBS laboratories.
Collapse
Affiliation(s)
- Danielle Durie
- Newborn Screening Ontario, Ottawa, Ontario K1H 8L1, Canada
| | - Ed Yeh
- Newborn Screening Ontario, Ottawa, Ontario K1H 8L1, Canada
| | | | | | - Dennis E Bulman
- Newborn Screening Ontario, Ottawa, Ontario K1H 8L1, Canada.,Department of Pediatrics, University of Ottawa , Ottawa, Ontario K1H8M5, Canada.,Ottawa Hospital Research Institute , Ottawa, Ontario K1H 8L6, Canada.,Research Institute, Children's Hospital of Eastern Ontario , Ottawa, Ontario K1H 5B2, Canada
| | | | - Pranesh Chakraborty
- Newborn Screening Ontario, Ottawa, Ontario K1H 8L1, Canada.,Department of Pediatrics, University of Ottawa , Ottawa, Ontario K1H8M5, Canada.,Research Institute, Children's Hospital of Eastern Ontario , Ottawa, Ontario K1H 5B2, Canada
| | - Osama Y Al-Dirbashi
- Newborn Screening Ontario, Ottawa, Ontario K1H 8L1, Canada.,Research Institute, Children's Hospital of Eastern Ontario , Ottawa, Ontario K1H 5B2, Canada.,College of Medicine and Health Sciences, United Arab Emirates University , Al Ain, 17172, United Arab Emirates
| |
Collapse
|
11
|
Parsa AA, New MI. Steroid 21-hydroxylase deficiency in congenital adrenal hyperplasia. J Steroid Biochem Mol Biol 2017; 165:2-11. [PMID: 27380651 DOI: 10.1016/j.jsbmb.2016.06.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 06/26/2016] [Accepted: 06/30/2016] [Indexed: 02/09/2023]
Abstract
Congenital adrenal hyperplasia (CAH) refers to a group of inherited genetic disorders involving deficiencies in enzymes that convert cholesterol to cortisol within the adrenal cortex. There are five key enzymes involved in the production of cortisol. Of these key enzymes, deficiency of 21-hydroxylase is the most commonly defective enzyme leading to CAH representing more than 90% of cases. The low adrenal cortisol levels associated with CAH affects the hypothalamic-pituitary-adrenal negative feedback system leading to increased pituitary adrenocorticotropic hormone (ACTH) production, which overstimulates the adrenal cortex in an attempt to increase cortisol production resulting in a hyperplastic adrenal cortex. The deficiency of enzyme 21-hydroxylase results from mutations or deletions in the CYP21A2 gene found on chromosome 6p. The disorder is transmitted as an autosomal recessive pattern and specific mutations may be correlated to enzymatic compromise of varying degrees, leading to the clinical manifestation of 21-hydroxylase deficiency (21-OHD) CAH.
Collapse
Affiliation(s)
- Alan A Parsa
- Department of Medicine, University of Hawaii, John A. Burns School of Medicine, Honolulu, Hawaii, United States.
| | - Maria I New
- Adrenal Steroid Disorders Program, Icahn School of Medicine at Mount Sinai, Manhattan, NY, United States
| |
Collapse
|
12
|
Berger JR, Wilson MR. Next-generation sequencing of tissue: A logical extension. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2016; 3:e261. [PMID: 27458600 PMCID: PMC4946770 DOI: 10.1212/nxi.0000000000000261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Joseph R Berger
- Department of Neurology (J.R.B.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; and the Department of Neurology (M.R.W.), University of California San Francisco
| | - Michael R Wilson
- Department of Neurology (J.R.B.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; and the Department of Neurology (M.R.W.), University of California San Francisco
| |
Collapse
|