1
|
Keane OM. Symposium review: Intramammary infections-Major pathogens and strain-associated complexity. J Dairy Sci 2019; 102:4713-4726. [PMID: 30827546 DOI: 10.3168/jds.2018-15326] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 01/08/2019] [Indexed: 01/30/2023]
Abstract
Intramammary infection (IMI) is one of the most costly diseases to the dairy industry. It is primarily due to bacterial infection and the major intramammary pathogens include Escherichia coli, Streptococcus uberis, and Staphylococcus aureus. The severity and outcome of IMI is dependent on several host factors including innate host resistance, energy balance, immune status, parity, and stage of lactation. Additionally, the infecting organism can influence the host immune response and progression of disease. It is increasingly recognized that not only the infecting pathogen species, but also the strain, can affect the transmission, severity, and outcome of IMI. For each of 3 major IMI-associated pathogens, S. aureus, Strep. uberis, and E. coli, specific strains have been identified that are adapted to the intramammary environment. Strain-dependent variation in the host immune response to infection has also been reported. The diversity of strains associated with IMI must be considered if vaccines effective against the full repertoire of mammary pathogenic strains are to be developed. Although important advances have been made recently in understanding the molecular mechanism underpinning strain-specific virulence, further research is required to fully elucidate the cellular and molecular pathogenesis of mammary adapted strains and the role of the strain in influencing the pathophysiology of infection. Improved understanding of molecular pathogenesis of strains associated with bovine IMI will contribute to the development of new control strategies, therapies, and vaccines. The development of enabling technologies such as pathogenomics, transcriptomics, and proteomics can facilitate system-level studies of strain-specific molecular pathogenesis and the identification of key mediators of host-pathogen interactions.
Collapse
Affiliation(s)
- O M Keane
- Animal and Bioscience Department, Teagasc, Grange, Dunsany, Co. Meath, Ireland C15 PW93.
| |
Collapse
|
2
|
Grzywa R, Walczak M, Łupicka-Słowik A, Bobrek K, Boivin S, Brown EL, Gaweł A, Stefaniak T, Oleksyszyn J, Sieńczyk M. Adjuvant-dependent immunogenicity of Staphylococcus aureus Efb and Map proteins in chickens. Vet Immunol Immunopathol 2015; 166:50-6. [PMID: 26004944 DOI: 10.1016/j.vetimm.2015.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/07/2015] [Accepted: 04/26/2015] [Indexed: 10/23/2022]
Abstract
The avian IgY antibodies generated in hens and isolated from egg yolk have gained in popularity as they present an alternative source of antibodies for diagnostic as well as therapeutic applications. One of the advantages of IgY technology are the large amounts of produced antibodies from a single animal combined with their high reactivity representing an attractive alternative for mammalian antibodies. Despite many known protocols for the immunization of chickens, the administration of new antigens often requires additional modification such as antigen dose or use of an adjuvant in order to elicit a significant immune response. We investigated the immunogenicity of three Staphylococcus aureus antigens including two extracellular proteins Map and Efb and one selected Efb105-124 epitope conjugated to KLH that were administered to the animals. Additionally, the immunization protocol included two adjuvant systems: Freund's complete adjuvant and Emulsigen-D. The results demonstrated a high immunostimulatory potency of Freund's complete adjuvant, especially in case of Efb compared to the immune response elicited by Emulsigen-D. However, after immunization with the KLH-Efb105-124 conjugate, the obtained antibodies showed similar reactivity regardless of adjuvant system used with the only exception being their avidity.
Collapse
Affiliation(s)
- Renata Grzywa
- Wroclaw University of Technology, Faculty of Chemistry, Division of Medicinal Chemistry and Microbiology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Maciej Walczak
- Wroclaw University of Technology, Faculty of Chemistry, Division of Medicinal Chemistry and Microbiology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Agnieszka Łupicka-Słowik
- Wroclaw University of Technology, Faculty of Chemistry, Division of Medicinal Chemistry and Microbiology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Kamila Bobrek
- Wroclaw University of Environmental and Life Sciences, Faculty of Veterinary Medicine, Department of Epizootiology and Clinic of Bird and Exotic Animals, Pl. Grunwaldzki 45, 50-366 Wroclaw, Poland
| | - Stephane Boivin
- European Molecular Biology Laboratory (EMBL), Notkestraße 85 c/o DESY, Building 25A, 22603 Hamburg, Germany
| | - Eric L Brown
- Center for Infectious Diseases, University of Texas School of Public Health, Houston, TX 77030, USA
| | - Andrzej Gaweł
- Wroclaw University of Environmental and Life Sciences, Faculty of Veterinary Medicine, Department of Epizootiology and Clinic of Bird and Exotic Animals, Pl. Grunwaldzki 45, 50-366 Wroclaw, Poland
| | - Tadeusz Stefaniak
- Wroclaw University of Environmental and Life Sciences, Faculty of Veterinary Medicine, Department of Immunology, Pathophysiology and Veterinary Preventive Medicine, Norwida 31, 50-375 Wroclaw, Poland
| | - Józef Oleksyszyn
- Wroclaw University of Technology, Faculty of Chemistry, Division of Medicinal Chemistry and Microbiology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Marcin Sieńczyk
- Wroclaw University of Technology, Faculty of Chemistry, Division of Medicinal Chemistry and Microbiology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland.
| |
Collapse
|
3
|
Which are important targets in development of S. aureus mastitis vaccine? Res Vet Sci 2015; 100:88-99. [DOI: 10.1016/j.rvsc.2015.03.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/04/2015] [Accepted: 03/14/2015] [Indexed: 12/21/2022]
|
4
|
Pereyra EAL, Dallard BE, Calvinho LF. [Aspects of the innate immune response to intramammary Staphylococcus aureus infections in cattle]. Rev Argent Microbiol 2015; 46:363-75. [PMID: 25576422 DOI: 10.1016/s0325-7541(14)70096-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 10/29/2014] [Indexed: 12/15/2022] Open
Abstract
Staphylococcus aureus is the pathogen most frequently isolated from bovine mastitis worldwide, causing chronic intramammary infections that limit profitable dairying. The objective of this article is to characterize the mechanisms involved in S. aureus mammary gland infections considering two different aspects of the infectious process; on the one hand, the aspects involved in the host innate immune response and on the other hand, the capacity of this organism to evade the immune system and interact with different cell types. The exploration of S. aureus interactions with the immune response of bovine mammary gland will help identify targets to outline new preventive or curative alternatives for intramammary infections caused by this organism.
Collapse
Affiliation(s)
- Elizabet A L Pereyra
- Laboratorio de Biología Celular y Molecular Aplicada, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina; Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), UNL-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Bibiana E Dallard
- Laboratorio de Biología Celular y Molecular Aplicada, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina; Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), UNL-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Luis F Calvinho
- Estación Experimental Agropecuaria Rafaela, Instituto Nacional de Tecnología Agropecuaria (INTA), Santa Fe, Argentina; Facultad de Ciencias Veterinarias, UNL, Santa Fe, Argentina.
| |
Collapse
|
5
|
Festa M, Brun P, Piccinini R, Castagliuolo I, Basso B, Zecconi A. Staphylococcus aureus Efb protein expression in Nicotiana tabacum and immune response to oral administration. Res Vet Sci 2013; 94:484-9. [PMID: 23158852 DOI: 10.1016/j.rvsc.2012.10.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 10/16/2012] [Accepted: 10/20/2012] [Indexed: 10/27/2022]
Abstract
Staphylococcus aureus (S. aureus) is one of the most widespread agent of diseases in humans and animals. In dairy cows, S. aureus is the most frequently isolated contagious pathogens in mastitis cases and vaccines are one of the potential tools to control the infections, thus decreasing the use of antibiotics. Among all the virulence factors produced by S. aureus, extra cellular fibrinogen binding protein (Efb) is an important one in the pathogenesis of mastitis. Plants are useful bioreactors to produce antigens and the aim of the study was the production of Efb in two cultivars of Nicotiana tabacum as a mean to produce vaccine against S. aureus in plants. A matrix attachment region (MAR) sequence was inserted near the two borders of transfer-DNA in the transformation vector in the two possible orientations. The presence of MAR elements in the transformation system significantly improved transformation efficiency and Efb protein yield up to a 2% level on total soluble protein (TSP). Mice orally immunized with transgenic lyophilized leaves produced an antigen-specific immune response.
Collapse
Affiliation(s)
- Margherita Festa
- Institute of Biophysics CNR-Dept. Life Sciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | | | | | | | | | | |
Collapse
|
6
|
Zecconi A, Scali F. Staphylococcus aureus virulence factors in evasion from innate immune defenses in human and animal diseases. Immunol Lett 2013; 150:12-22. [PMID: 23376548 DOI: 10.1016/j.imlet.2013.01.004] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 12/09/2012] [Accepted: 01/08/2013] [Indexed: 01/04/2023]
Abstract
In the last decades, Staphylococcus aureus acquired a dramatic relevance in human and veterinary medicine for different reasons, one of them represented by the increasing prevalence of antibiotic resistant strains. However, antibiotic resistance is not the only weapon in the arsenal of S. aureus. Indeed, these bacteria have plenty of virulence factors, including a vast ability to evade host immune defenses. The innate immune system represents the first line of defense against invading pathogens. This system consists of three major effector mechanisms: antimicrobial peptides and enzymes, the complement system and phagocytes. In this review, we focused on S. aureus virulence factors involved in the immune evasion in the first phases of infection: TLR recognition avoidance, adhesins affecting immune response and resistance to host defenses peptides and polypeptides. Studies of innate immune defenses and their role against S. aureus are important in human and veterinary medicine given the problems related to S. aureus antimicrobial resistance. Moreover, due to the pathogen ability to manipulate the immune response, these data are needed to develop efficacious vaccines or molecules against S. aureus.
Collapse
Affiliation(s)
- Alfonso Zecconi
- Università degli Studi di Milano, Dip. Scienze Veterinarie e Sanità Pubblica, Via Celoria 10, 20133 Milano, Italy.
| | | |
Collapse
|
7
|
Evaluation of clumping factor A binding region A in a subunit vaccine against Staphylococcus aureus-induced mastitis in mice. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:1746-52. [PMID: 20826613 DOI: 10.1128/cvi.00162-10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The present study evaluated the potential of recombinant binding region A of clumping factor A (rClfA-A) to be an effective component of a vaccine against mastitis induced by Staphylococcus aureus in the mouse. rClfA-A and inactivated S. aureus were each emulsified in Freund's adjuvant, mineral oil adjuvant, and Seppic adjuvant; phosphate-buffered saline was used as a control. Seven groups of 12 mice each were immunized intraperitoneally three times at 2-week intervals. The titers of IgG and subtypes thereof (IgG1 and IgG2a) in the rClfA-A-immunized group were more than 1,000-fold higher than those in the killed-bacteria-immunized group (P < 0.01). Of the three adjuvants used, mineral oil adjuvant induced the highest antibody levels for both antigens (P < 0.001). Furthermore, the anti-rClfA-A antibody capacities for bacterial adhesion and opsonizing phagocytosis were significantly greater in the rClfA-A-immunized group than in the killed-bacteria-immunized group (P < 0.05). Lactating mice immunized with either rClfA-A or inactivated vaccine were challenged with S. aureus via the intramammary route. The numbers of bacteria recovered from the murine mammary glands 24 h after inoculation were significantly lower in the rClfA-A group than in the killed-bacteria-immunized group (P < 0.001). Histologic examination of the mammary glands showed that rClfA-A immunization effectively preserved tissue integrity. Thus, rClfA-A emulsified in an oil adjuvant provides strong immune protection against S. aureus-induced mastitis in the mouse.
Collapse
|