1
|
Rahman MM, Grice ID, Ulett GC, Wei MQ. Advances in Bacterial Lysate Immunotherapy for Infectious Diseases and Cancer. J Immunol Res 2024; 2024:4312908. [PMID: 38962577 PMCID: PMC11221958 DOI: 10.1155/2024/4312908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 07/05/2024] Open
Abstract
Antigenic cell fragments, pathogen-associated molecular patterns, and other immunostimulants in bacterial lysates or extracts may induce local and systemic immune responses in specific and nonspecific paradigms. Based on current knowledge, this review aimed to determine whether bacterial lysate has comparable functions in infectious diseases and cancer treatment. In infectious diseases, including respiratory and urinary tract infections, immune system activation by bacterial lysate can identify and combat pathogens. Commercially available bacterial lysates, including OM-85, Ismigen, Lantigen B, and LW 50020, were effective in children and adults in treating respiratory tract infections, chronic obstructive pulmonary disease, rhinitis, and rhinosinusitis with varying degrees of success. Moreover, OM-89, Uromune, Urovac, Urivac, and ExPEC4V showed therapeutic benefits in controlling urinary tract infections in adults, especially women. Bacterial lysate-based therapeutics are safe, well-tolerated, and have few side effects, making them a good alternative for infectious disease management. Furthermore, a nonspecific immunomodulation by bacterial lysates may stimulate innate immunity, benefiting cancer treatment. "Coley's vaccine" has been used to treat sarcomas, carcinomas, lymphomas, melanomas, and myelomas with varying outcomes. Later, several similar bacterial lysate-based therapeutics have been developed to treat cancers, including bladder cancer, non-small cell lung cancer, and myeloma; among them, BCG for in situ bladder cancer is well-known. Proinflammatory cytokines, including IL-1, IL-6, IL-12, and TNF-α, may activate bacterial antigen-specific adaptive responses that could restore tumor antigen recognition and response by tumor-specific type 1 helper cells and cytotoxic T cells; therefore, bacterial lysates are worth investigating as a vaccination adjuvants or add-on therapies for several cancers.
Collapse
Affiliation(s)
- Md. Mijanur Rahman
- School of Pharmacy and Medical SciencesGriffith University, Gold Coast 4222, QLD, Australia
- Menzies Health Institute QueenslandGriffith University, Gold Coast 4222, QLD, Australia
| | - I. Darren Grice
- School of Pharmacy and Medical SciencesGriffith University, Gold Coast 4222, QLD, Australia
- Institute for GlycomicsGriffith University, Gold Coast 4222, QLD, Australia
| | - Glen C. Ulett
- School of Pharmacy and Medical SciencesGriffith University, Gold Coast 4222, QLD, Australia
- Menzies Health Institute QueenslandGriffith University, Gold Coast 4222, QLD, Australia
| | - Ming Q. Wei
- School of Pharmacy and Medical SciencesGriffith University, Gold Coast 4222, QLD, Australia
- Menzies Health Institute QueenslandGriffith University, Gold Coast 4222, QLD, Australia
| |
Collapse
|
2
|
Yao Y, Zhang Z, Yang Z. The combination of vaccines and adjuvants to prevent the occurrence of high incidence of infectious diseases in bovine. Front Vet Sci 2023; 10:1243835. [PMID: 37885619 PMCID: PMC10598632 DOI: 10.3389/fvets.2023.1243835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023] Open
Abstract
As the global population grows, the demand for beef and dairy products is also increasing. The cattle industry is facing tremendous pressures and challenges. The expanding cattle industry has led to an increased risk of disease in cattle. These diseases not only cause economic losses but also pose threats to public health and safety. Hence, ensuring the health of cattle is crucial. Vaccination is one of the most economical and effective methods of preventing bovine infectious diseases. However, there are fewer comprehensive reviews of bovine vaccines available. In addition, the variable nature of bovine infectious diseases will result in weakened or even ineffective immune protection from existing vaccines. This shows that it is crucial to improve overall awareness of bovine vaccines. Adjuvants, which are crucial constituents of vaccines, have a significant role in enhancing vaccine response. This review aims to present the latest advances in bovine vaccines mainly including types of bovine vaccines, current status of development of commonly used vaccines, and vaccine adjuvants. In addition, this review highlights the main challenges and outstanding problems of bovine vaccines and adjuvants in the field of research and applications. This review provides a theoretical and practical basis for the eradication of global bovine infectious diseases.
Collapse
Affiliation(s)
- Yiyang Yao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhipeng Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhangping Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| |
Collapse
|
3
|
Efficacy of immunization with a recombinant S. aureus vaccine formulated with liposomes and ODN-CpG against natural S. aureus intramammary infections in heifers and cows. Res Vet Sci 2022; 145:177-187. [DOI: 10.1016/j.rvsc.2022.02.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/24/2022] [Accepted: 02/07/2022] [Indexed: 11/17/2022]
|
4
|
Evaluation of the Efficacy of a Cholera-Toxin-Based Staphylococcus aureus Vaccine against Bovine Intramammary Challenge. Vaccines (Basel) 2020; 9:vaccines9010006. [PMID: 33374191 PMCID: PMC7824273 DOI: 10.3390/vaccines9010006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/13/2020] [Accepted: 12/18/2020] [Indexed: 01/14/2023] Open
Abstract
Staphylococcus aureus (S. aureus) is a primary agent of bovine mastitis and a source of significant economic loss for the dairy industry. We previously reported antigen-specific immune induction in the milk and serum of dairy cows following vaccination with a cholera toxin A2 and B subunit (CTA2/B) based vaccine containing the iron-regulated surface determinant A (IsdA) and clumping factor A (ClfA) antigens of S. aureus (IsdA + ClfA-CTA2/B). The goal of the current study was to assess the efficacy of this vaccine to protect against S. aureus infection after intramammary challenge. Six mid-lactation heifers were randomized to vaccinated and control groups. On days 1 and 14 animals were inoculated intranasally with vaccine or vehicle control, and on day 20 animals were challenged with S. aureus. Clinical outcome, milk quality, bacterial shedding, and somatic cell count (SCC) were followed for ten days post-challenge. Vaccinated animals did not show signs of clinical S. aureus mastitis and had lower SCCs compared to control animals during the challenge period. Reductions in bacterial shedding were observed but were not significant between groups. Antibody analysis of milk and serum indicated that, upon challenge, vaccinated animals produced enhanced IsdA- and ClfA-CTA2/B specific immunoglobulin G (IgG) responses, while responses to CTA2/B alone were not different between groups. Responses after challenge were largely IgG1 against the IsdA antigen and mixed IgG1/IgG2 against the ClfA antigen. In addition, there was a significant increase in interferon gamma (IFN-γ) expression from blood cells in vaccinated animals on day 20. While preliminary, these findings support evidence of the induction of active immunity by IsdA + ClfA-CTA2/B, and further assessment of this vaccine is warranted.
Collapse
|
5
|
Effects of chronic Staphylococcus aureus infection on immunological parameters and functionality of macrophages isolated from bovine mammary secretions. Microb Pathog 2019; 137:103743. [DOI: 10.1016/j.micpath.2019.103743] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/05/2019] [Accepted: 09/09/2019] [Indexed: 12/19/2022]
|
6
|
Evaluation of the humoral immune response to a multicomponent recombinant vaccine against S. aureus in healthy pregnant heifers. Vet J 2018; 235:47-53. [DOI: 10.1016/j.tvjl.2018.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 03/12/2018] [Accepted: 03/16/2018] [Indexed: 11/19/2022]
|
7
|
Boerhout EM, Koets AP, Mols-Vorstermans TGT, Nuijten PJM, Hoeijmakers MJH, Rutten VPMG, Bijlsma JJE. The antibody response in the bovine mammary gland is influenced by the adjuvant and the site of subcutaneous vaccination. Vet Res 2018; 49:25. [PMID: 29490692 PMCID: PMC5831572 DOI: 10.1186/s13567-018-0521-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 02/14/2018] [Indexed: 11/10/2022] Open
Abstract
Intramammary infections in cattle resulting in mastitis have detrimental effects on cows' well-being, lifespan and milk production. In the host defense against S. aureus mastitis antibodies are thought to play an important role. To explore potential ways to increase antibody titers in the bovine mammary gland the effects of various adjuvants on the magnitude, isotype, and neutralizing capacity of antibodies produced following subcutaneous vaccine administration at different immunization sites were analyzed. In this study, α-toxoid was used as a model antigen and formulated in three different alum-based adjuvants: Alum-Saponin, Alum-Oil, and Alum-Saponin-Oil. Vaccines were administered near the suspensory ligament of the udder or in the lateral triangular area of the neck. At both immunization sites, immunization with α-toxoid in Alum-Saponin-Oil resulted in higher specific antibody titers in milk and serum as compared with Alum-Oil and Alum-Saponin, without favoring an IgG1, IgG2, or IgA response. Furthermore, the neutralizing capacity of milk serum and serum following immunization near the udder and in the neck was higher when Alum-Saponin-Oil was used as adjuvant compared with Alum-Oil and Alum-Saponin. Prime immunizations near the udder effectively increased both antibody isotype titers and neutralization titers, while prime plus boost immunizations were required to induce similar effects following immunization in the neck. Results indicate that subcutaneous administration of an Alum-Saponin-Oil based vaccine near the udder could be further explored for the development of a one-shot vaccination strategy to efficiently increase intramammary antibody responses.
Collapse
Affiliation(s)
- Eveline M Boerhout
- Ruminants Research and Development, MSD Animal Health, Wim de Körverstraat 35, 5830 AA, Boxmeer, The Netherlands
| | - Ad P Koets
- Department of Bacteriology and Epidemiology, Central Veterinary Institute Part of Wageningen UR, Edelhertweg 15, PO box 65, 8200 AB, Lelystad, The Netherlands.,Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, 3584 CL, Utrecht, The Netherlands
| | - Tanja G T Mols-Vorstermans
- Ruminants Research and Development, MSD Animal Health, Wim de Körverstraat 35, 5830 AA, Boxmeer, The Netherlands
| | - Piet J M Nuijten
- Ruminants Research and Development, MSD Animal Health, Wim de Körverstraat 35, 5830 AA, Boxmeer, The Netherlands
| | - Mathieu J H Hoeijmakers
- Global Clinical Research, MSD Animal Health, Wim de Körverstraat 35, 5830 AA, Boxmeer, The Netherlands
| | - Victor P M G Rutten
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, The Netherlands.,Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa
| | - Jetta J E Bijlsma
- Discovery and Technology, MSD Animal Health, Wim de Körverstraat 35, 5830 AA, Boxmeer, The Netherlands.
| |
Collapse
|
8
|
Which are important targets in development of S. aureus mastitis vaccine? Res Vet Sci 2015; 100:88-99. [DOI: 10.1016/j.rvsc.2015.03.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/04/2015] [Accepted: 03/14/2015] [Indexed: 12/21/2022]
|
9
|
Camussone C, Pujato N, Renna M, Veaute C, Morein B, Marcipar I, Calvinho L. Immune response and functional role of antibodies raised in heifers against a Staphylococcus aureus CP5 lysate and recombinant antigens vaccine formulated with Iscom Matrix adjuvant. Vet Immunol Immunopathol 2014; 162:96-107. [DOI: 10.1016/j.vetimm.2014.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 09/18/2014] [Accepted: 10/07/2014] [Indexed: 12/24/2022]
|
10
|
Yeaman MR, Filler SG, Schmidt CS, Ibrahim AS, Edwards JE, Hennessey JP. Applying Convergent Immunity to Innovative Vaccines Targeting Staphylococcus aureus. Front Immunol 2014; 5:463. [PMID: 25309545 PMCID: PMC4176462 DOI: 10.3389/fimmu.2014.00463] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 09/10/2014] [Indexed: 12/22/2022] Open
Abstract
Recent perspectives forecast a new paradigm for future “third generation” vaccines based on commonalities found in diverse pathogens or convergent immune defenses to such pathogens. For Staphylococcus aureus, recurring infections and a limited success of vaccines containing S. aureus antigens imply that native antigens induce immune responses insufficient for optimal efficacy. These perspectives exemplify the need to apply novel vaccine strategies to high-priority pathogens. One such approach can be termed convergent immunity, where antigens from non-target organisms that contain epitope homologs found in the target organism are applied in vaccines. This approach aims to evoke atypical immune defenses via synergistic processes that (1) afford protective efficacy; (2) target an epitope from one organism that contributes to protective immunity against another; (3) cross-protect against multiple pathogens occupying a common anatomic or immunological niche; and/or (4) overcome immune subversion or avoidance strategies of target pathogens. Thus, convergent immunity has a potential to promote protective efficacy not usually elicited by native antigens from a target pathogen. Variations of this concept have been mainstays in the history of viral and bacterial vaccine development. A more far-reaching example is the pre-clinical evidence that specific fungal antigens can induce cross-kingdom protection against bacterial pathogens. This trans-kingdom protection has been demonstrated in pre-clinical studies of the recombinant Candida albicans agglutinin-like sequence 3 protein (rAls3) where it was shown that a vaccine containing rAls3 provides homologous protection against C. albicans, heterologous protection against several other Candida species, and convergent protection against several strains of S. aureus. Convergent immunity reflects an intriguing new approach to designing and developing vaccine antigens and is considered here in the context of vaccines to target S. aureus.
Collapse
Affiliation(s)
- Michael R Yeaman
- Department of Medicine, David Geffen School of Medicine at UCLA , Los Angeles, CA , USA ; Division of Infectious Diseases, Harbor-UCLA Medical Center , Torrance, CA , USA ; Division of Molecular Medicine, Harbor-UCLA Medical Center , Torrance, CA , USA ; St. John's Cardiovascular Research Center, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center , Torrance, CA , USA
| | - Scott G Filler
- Department of Medicine, David Geffen School of Medicine at UCLA , Los Angeles, CA , USA ; Division of Infectious Diseases, Harbor-UCLA Medical Center , Torrance, CA , USA ; St. John's Cardiovascular Research Center, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center , Torrance, CA , USA
| | | | - Ashraf S Ibrahim
- Department of Medicine, David Geffen School of Medicine at UCLA , Los Angeles, CA , USA ; Division of Infectious Diseases, Harbor-UCLA Medical Center , Torrance, CA , USA ; St. John's Cardiovascular Research Center, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center , Torrance, CA , USA
| | - John E Edwards
- Department of Medicine, David Geffen School of Medicine at UCLA , Los Angeles, CA , USA ; Division of Infectious Diseases, Harbor-UCLA Medical Center , Torrance, CA , USA ; St. John's Cardiovascular Research Center, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center , Torrance, CA , USA
| | | |
Collapse
|
11
|
Renna MS, Pereyra EA, Baravalle C, Camussone CM, Dallard BE, Marcipar IS, Calvinho LF. Functional role of antibodies generated in heifers through immunization withStaphylococcus aureusvaccines in invasion and phagocytosis assays. FEMS Microbiol Lett 2014; 360:62-9. [DOI: 10.1111/1574-6968.12588] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 08/08/2014] [Accepted: 08/19/2014] [Indexed: 12/01/2022] Open
Affiliation(s)
- María S. Renna
- Laboratorio de Biología Celular y Molecular Aplicada; Facultad de Ciencias Veterinarias; Universidad Nacional del Litoral; Santa Fe Argentina
- Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Buenos Aires Argentina
| | - Elizabet A.L. Pereyra
- Laboratorio de Biología Celular y Molecular Aplicada; Facultad de Ciencias Veterinarias; Universidad Nacional del Litoral; Santa Fe Argentina
- Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Buenos Aires Argentina
| | - Celina Baravalle
- Laboratorio de Biología Celular y Molecular Aplicada; Facultad de Ciencias Veterinarias; Universidad Nacional del Litoral; Santa Fe Argentina
- Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Buenos Aires Argentina
| | - Cecilia M. Camussone
- Concejo Nacional de Investigaciones Científicas y Técnicas; Buenos Aires Argentina
- Estación Experimental Agropecuaria Rafaela; Instituto Nacional de Tecnología Agropecuaria (INTA); Santa Fe Argentina
| | - Bibiana E. Dallard
- Laboratorio de Biología Celular y Molecular Aplicada; Facultad de Ciencias Veterinarias; Universidad Nacional del Litoral; Santa Fe Argentina
- Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Buenos Aires Argentina
| | - Ivan S. Marcipar
- Concejo Nacional de Investigaciones Científicas y Técnicas; Buenos Aires Argentina
- Facultad de Bioquímica y Ciencias Biológicas; Universidad Nacional del Litoral; Santa Fe Argentina
| | - Luis F. Calvinho
- Estación Experimental Agropecuaria Rafaela; Instituto Nacional de Tecnología Agropecuaria (INTA); Santa Fe Argentina
- Facultad de Ciencias Veterinarias; Universidad Nacional del Litoral; Santa Fe Argentina
| |
Collapse
|
12
|
Gasparini MR, Vieira RFDC, Nascimento DAGD, Garcia JL, Vidotto O, Vidotto MC. Immune response of calves inoculated with proteins of Anaplasma marginale bound to an immunostimulant complex. ACTA ACUST UNITED AC 2014; 22:253-9. [PMID: 23856733 DOI: 10.1590/s1984-29612013000200044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 05/16/2013] [Indexed: 11/22/2022]
Abstract
Despite our current knowledge of the immunology, pathology, and genetics of Anaplasma marginale, prevention in cattle is currently based on old standbys, including live attenuated vaccines, antibiotic treatment, and maintaining enzootic stability in cattle herds. In the present study, we evaluated the use of an immunostimulant complex (ISCOMATRIX) adjuvant, associated with a pool of recombinant major surface proteins (rMSP1a, rMSP1b, rMSP4 and rMSP5) to improve the humoral immune response triggered in calves mainly by IgG2. Ten calves were divided in three groups: 4 calves were inoculated with the ISCOMATRIX/rMSPs (G1); 2 calves were inoculated with ISCOMATRIX adjuvant (G2); and 4 calves received saline (G3). Three inoculations were administered at 21-day intervals. In G1, the calves showed significant increases in total IgG, IgG1 and IgG2 levels 21 days after the second inoculation, compared to the control group (p < 0.05), and G1 calves remained above the cut-off value 28 days after the third inoculation (p < 0.05). The post-immunized sera from calves in G1 reacted specifically for each of the rMSPs used. In conclusion, the ISCOMATRIX/rMSPs induced antigen-specific seroconversion in calves. Therefore, additional testing to explore the protection induced by rMSPs, both alone and in conjunction with proteins previously identified as subdominant epitopes, is warranted.
Collapse
|
13
|
Vaccines and Vaccination Practices: Key to Sustainable Animal Production. ENCYCLOPEDIA OF AGRICULTURE AND FOOD SYSTEMS 2014. [PMCID: PMC7152402 DOI: 10.1016/b978-0-444-52512-3.00189-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Deb R, Kumar A, Chakraborty S, Verma AK, Tiwari R, Dhama K, Singh U, Kumar S. Trends in diagnosis and control of bovine mastitis: a review. Pak J Biol Sci 2013; 16:1653-1661. [PMID: 24506032 DOI: 10.3923/pjbs.2013.1653.1661] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Mastitis (inflammation of mammary gland) is a most devastating disease condition in terms of economic losses occurring throughout the world. The etiological agents may vary from place to place depending on climate; animal species and animal husbandry and include wide variety of gram positive and gram negative bacteria; and fungi. They may be either contagious viz. Staphylococcus aureus; Streptococcus agalactiae or environmental viz. S. dysgalactiae, S. uberis, Corynebacterium bovis and Coagulase negative Staphylococcus. Conventional diagnostic tests viz. California Mastitis Test (CMT); R-mastitest and Mast-O-test methods are applied under field conditions; whereas somatic cell count and Bulk Tank Somatic Cell Count (BTSCC) are useful for early mastitis detection and detection of sub clinical or chronic mastitis respectively. In vitro culture based diagnosis require further study as they can detect only viable cells. The advent of Polymerase Chain Reaction (PCR) technology along with its various versions like multiplex and real time PCR has improved the rapidity and sensitivity of diagnosis. Circulating micro RNA (miRNA) based diagnosis; immune assay and proteomics based detection along with biochips and biosensors prove to be asset to diagnosticians for advanced diagnosis of this economically important condition. Improvement of milking hygiene; implementation of post-milking teat disinfection; regular control of the milking equipments; implementation of milking order; Improvement of bedding material are the general measures to prevent new cases of mastitis. The use of antibiotics (intramammary infusions; bacteriocins) and herbs (Terminalia spp.) are important for prophylaxis and therapeutics. Vaccines viz. cell based; Recombinant (staphylococcal enterotoxin type C mutant) or chimeric (pauA); live (S. uberis 0140J stain based) and bacterial surface extract based; DNA-based and DNA-protein based have greatly aided in management of bovine mastitis. Quorum sensing and disease resistant breeding using novel biomarkers viz. toll like receptors (TLR) 2 and 4, interleukin (IL) 8; breast cancer type 1 susceptibility protein (BRCA1) and calcium channel voltage-dependent alpha 2/delta sub unit 1 (CACNA2D1) are also indispensable. This mini review gives an overview of all these different aspects that act as trend setters as far as the diagnosis and control of bovine mastitis is concerned to help the diagnosticians; epidemiologists and researchers not to remain ignorant about this grave condition.
Collapse
Affiliation(s)
- Rajib Deb
- Animal Genetics and Breeding, Project Directorate on Cattle, Indian Council of Agricultural Research, Grass Farm Road, Meerut, 250001 Uttar Pradesh, India
| | - Amit Kumar
- Department of Microbiology and Immunology, Uttar Pradesh Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwa Vidyalaya Evum Go-Anusandhan Sansthan (DUVASU), Mathura, 281001 Uttar Pradesh, India
| | - Sandip Chakraborty
- Animal Resource Development Department, Pt. Nehru Complex, Agartala, 799006 Tripura, India
| | - Amit Kumar Verma
- Department of Veterinary Epidemiology and Preventive Medicine, Uttar Pradesh Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwa Vidyalaya Evum Go-Anusandhan Sansthan (DUVASU), Mathura, 281001 Uttar Pradesh, India
| | - Ruchi Tiwari
- Department of Microbiology and Immunology, Uttar Pradesh Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwa Vidyalaya Evum Go-Anusandhan Sansthan (DUVASU), Mathura, 281001 Uttar Pradesh, India
| | - Kuldeep Dhama
- Division of Pathology, Indian Veterinary Research Institute, Izatnagar, Bareilly Uttar Pradesh-243122, India
| | - Umesh Singh
- Animal Genetics and Breeding, Project Directorate on Cattle, Indian Council of Agricultural Research, Grass Farm Road, Meerut, 250001 Uttar Pradesh, India
| | - Sushil Kumar
- Animal Genetics and Breeding, Project Directorate on Cattle, Indian Council of Agricultural Research, Grass Farm Road, Meerut, 250001 Uttar Pradesh, India
| |
Collapse
|
15
|
Immune response of heifers against a Staphylococcus aureus CP5 whole cell and lysate vaccine formulated with ISCOM Matrix adjuvant. Res Vet Sci 2013; 96:86-94. [PMID: 24210331 DOI: 10.1016/j.rvsc.2013.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 08/12/2013] [Accepted: 10/15/2013] [Indexed: 12/24/2022]
Abstract
Staphylococcus aureus is the most frequently isolated pathogen from bovine intramammary infections worldwide. Commercially available vaccines for mastitis control are composed either of S. aureus lysates or whole-cells formulated with traditional adjuvants. We recently showed the ability of a S. aureus CP5 whole-cell vaccine adjuvanted with ISCOM Matrix to increase specific antibodies production in blood and milk, improving opsonic capacity, compared with the same vaccine formulated with Al(OH)3. However, there is no information about the use of ISCOM Matrix for the formulation of bacterial lysates. The aim of this study was to characterize the innate and humoral immune responses induced by a S. aureus CP5 whole-cell or lysate vaccine, formulated with ISCOM Matrix after immunization of pregnant heifers. Both immunogens stimulated strong humoral immune responses in blood and milk, raising antibodies that increased opsonic capacity. Lysate formulation generated a higher and longer lasting antibody titer and stimulated a higher expression of regulatory and pro-inflammatory cytokines compared with the whole-cell vaccine.
Collapse
|
16
|
Factores de virulencia de Staphylococcus aureus asociados con infecciones mamarias en bovinos: relevancia y rol como agentes inmunógenos. Rev Argent Microbiol 2013; 45:119-30. [DOI: 10.1016/s0325-7541(13)70011-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|