1
|
Galland F, de Espindola JS, Sacilotto ES, Almeida LGVC, Morari J, Velloso LA, Dos Santos LD, Rossini BC, Bertoldo Pacheco MT. Digestion of whey peptide induces antioxidant and anti-inflammatory bioactivity on glial cells: Sequences identification and structural activity analysis. Food Res Int 2024; 188:114433. [PMID: 38823827 DOI: 10.1016/j.foodres.2024.114433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 06/03/2024]
Abstract
Whey derived peptides have shown potential activity improving brain function in pathological condition. However, there is little information about their mechanism of action on glial cells, which have important immune functions in brain. Astrocytes and microglia are essential in inflammatory and oxidative defense that take place in neurodegenerative disease. In this work we evaluate antioxidant and anti-inflammatory potential bioactivity of whey peptide in glial cells. Peptides were formed during simulated gastrointestinal digestion (Infogest protocol), and low molecular weight (<5kDA) peptides (WPHf) attenuated reactive oxygen species (ROS) production induced by hydrogen peroxide stimulus in both cells in dose-dependent manner. WPHf induced an increase in the antioxidant glutathione (GSH) content and prevented GSH reduction induced by lipopolysaccharides (LPS) stimulus in astrocytes cells in a cell specific form. An increase in cytokine mRNA expression (TNFα and IL6) and nitric oxide secretion induced by LPS was attenuated by WPHf pre-treatment in both cells. The inflammatory pathway was dependent on NFκB activation. Bioactive peptide ranking analysis showed positive correlation with hydrophobicity and negative correlation with high molecular weights. The sequence identification revealed 19 peptides cross-referred with bioactive database. Whey peptides were rich in leucine, valine and tyrosine in the C-terminal region and lysine in the N-terminal region. The anti-inflammatory and antioxidant potential of whey peptides were assessed in glia cells and its mechanisms of action were related, such as modulation of antioxidant enzymes and anti-inflammatory pathways. Features of the peptide structure, such as molecular size, hydrophobicity and types of amino acids present in the terminal region are associated to bioactivity.
Collapse
Affiliation(s)
- Fabiana Galland
- Quality and Science Center of Food, Institute of Food Technology (ITAL), Brazil Ave. 2880, P.O. Box 139, Campinas, SP 13070-178, Brazil.
| | - Juliana Santos de Espindola
- Quality and Science Center of Food, Institute of Food Technology (ITAL), Brazil Ave. 2880, P.O. Box 139, Campinas, SP 13070-178, Brazil
| | - Eduarda Spagnol Sacilotto
- Quality and Science Center of Food, Institute of Food Technology (ITAL), Brazil Ave. 2880, P.O. Box 139, Campinas, SP 13070-178, Brazil
| | - Lilian Gabriely V C Almeida
- Quality and Science Center of Food, Institute of Food Technology (ITAL), Brazil Ave. 2880, P.O. Box 139, Campinas, SP 13070-178, Brazil
| | - Joseane Morari
- Obesity and Comorbidities Research Center (OCRC), University of Campinas, São Paulo, Brazil
| | - Lício Augusto Velloso
- Obesity and Comorbidities Research Center (OCRC), University of Campinas, São Paulo, Brazil.
| | | | - Bruno Cesar Rossini
- Institute of Biotechnology, São Paulo State University (UNESP), Botucatu, SP 18607-440, Brazil.
| | - Maria Teresa Bertoldo Pacheco
- Quality and Science Center of Food, Institute of Food Technology (ITAL), Brazil Ave. 2880, P.O. Box 139, Campinas, SP 13070-178, Brazil.
| |
Collapse
|
2
|
Patel K, Mani A. Food-derived Peptides as Promising Neuroprotective Agents: Mechanism and Therapeutic Potential. Curr Top Med Chem 2024; 24:1212-1229. [PMID: 38551052 DOI: 10.2174/0115680266289248240322061723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/20/2024] [Accepted: 03/01/2024] [Indexed: 07/20/2024]
Abstract
Many food-derived peptides have the potential to improve brain health and slow down neurodegeneration. Peptides are produced by the enzymatic hydrolysis of proteins from different food sources. These peptides have been shown to be involved in antioxidant and anti-inflammatory activity, neuro-transmission modulation, and gene expression regulation. Although few peptides directly affect chromatin remodeling and histone alterations, others indirectly affect the neuroprotection process by interfering with epigenetic changes. Fish-derived peptides have shown neuroprotective properties that reduce oxidative stress and improve motor dysfunction in Parkinson's disease models. Peptides from milk and eggs have been found to have anti-inflammatory properties that reduce inflammation and improve cognitive function in Alzheimer's disease models. These peptides are potential therapeutics for neurodegenerative diseases, but more study is required to assess their efficacy and the underlying neuroprotective benefits. Consequently, this review concentrated on each mechanism of action used by food-derived peptides that have neuroprotective advantages and applications in treating neurodegenerative diseases. This article highlights various pathways, such as inflammatory pathways, major oxidant pathways, apoptotic pathways, neurotransmitter modulation, and gene regulation through which food-derived peptides interact at the cellular level.
Collapse
Affiliation(s)
- Kavita Patel
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, India
| | - Ashutosh Mani
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, India
| |
Collapse
|
3
|
Ma Y, Xu J, Guo R, Teng G, Chen Y, Xu X. In vitro gastrointestinal model for the elderly: Effect of high hydrostatic pressure on protein structures and antioxidant activities of whey protein isolate. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
4
|
In Vitro Anti-Obesity Effect of Shenheling Extract (SHLE) Fermented with Lactobacillus fermentum grx08. Foods 2022; 11:foods11091221. [PMID: 35563944 PMCID: PMC9104015 DOI: 10.3390/foods11091221] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 11/24/2022] Open
Abstract
Obesity is a common global problem. There are many fat-reducing herbal prescriptions in traditional Chinese medicine that have been proven to be safe and functional during long-term application. Microbial fermentation can improve the efficacy of herbal medicine and improve the unsavory flavor. In this study, Shenheling extract (SHLE) composed of six medicine food homology materials was used as the research object. The purpose of this study was to evaluate the effects of Lactobacillusfermentum grx08 fermentation on the antiobesity efficacy and flavor of SHLE. We found that L. fermentum grx08 grew well in SHLE. After 72 h of fermentation, the total polysaccharides, total flavonoids, total polyphenols and total saponins of SHLE decreased, but the lipase inhibitory activity and total antioxidant capacity (FRAP) were significantly increased (p < 0.01). There were no significant differences in the α-glucosidase inhibition rate and DPPH· clearance rate before or after fermentation (p > 0.05). In addition, the fermentation reduces the unpleasant flavors of SHLE such as bitterness and grassy and cassia flavors. This study demonstrates that SHLE fermented by L. fermentum grx08 improved some anti-obesity functions and improved the unpleasant flavor.
Collapse
|
5
|
Hydrolase-Treated Royal Jelly Attenuates H 2O 2- and Glutamate-Induced SH-SY5Y Cell Damage and Promotes Cognitive Enhancement in a Rat Model of Vascular Dementia. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2021; 2021:2213814. [PMID: 34651043 PMCID: PMC8510834 DOI: 10.1155/2021/2213814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/23/2021] [Indexed: 11/17/2022]
Abstract
Vascular dementia (VaD) is the second most common type of dementia following Alzheimer's disease, but the therapeutic efficacy is still not effective. This makes the searching for novel neuroprotective agents important. Therefore, we hypothesized that royal jelly, a well-known traditional medicine, could attenuate memory impairment and brain damage in vascular dementia. This study determined the effects of royal jelly hydrolysate (RJH) and possible mechanism of cell damage and cognitive-enhancing effect in animal study. An in vitro study assessed the effects of RJH on acetylcholinesterase inhibitor, cell viability, and cell damage in SH-SY5Y neuroblastoma cells. Then, an in vivo study examined vascular dementia by the occlusion of the right middle cerebral artery (Rt.MCAO); adult male Wistar rats had been orally given RJH at doses ranging from 10, 50, to 100 mg/kg for 14 days before and 14 days after the occlusion of Rt.MCAO to mimic the VaD condition. Rats' spatial memory was evaluated using Morris water maze and radial arm maze every 7 days after Rt.MCAO throughout a 14-day experimental period, and then, they were sacrificed and the acetylcholinesterase (AChE) activity in the hippocampus was determined. The results showed that RJH has no cytotoxic effect with the final concentration up to 500 μg protein/ml and reduces cell death from the H2O2- and glutamate-induced cell damage in in vitro neuroblastoma cells. Importantly, RJH significantly improved memory performance in Morris water maze test and radial arm maze and decreased the level of acetyl cholinesterase activity. In conclusion, RJH is the potential neuroprotective agent and cognitive enhancer for VaD.
Collapse
|
6
|
Pan M, Liu K, Yang J, Liu S, Wang S, Wang S. Advances on Food-Derived Peptidic Antioxidants-A Review. Antioxidants (Basel) 2020; 9:E799. [PMID: 32867173 PMCID: PMC7554705 DOI: 10.3390/antiox9090799] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 02/07/2023] Open
Abstract
The oxidation process is considered to be the main reason behind human aging, human degenerative diseases and food quality degradation. Food-derived peptidic antioxidants (PAs) have wide sources and great activity, and have broad application prospects in removing excess reactive oxygen species in the body, anti-aging and preventing and treating diseases related to oxidative stress. On the other hand, PAs are expected to inhibit the lipid peroxidation of foods and increase the stability of the food system in the food industry. However, the production pathways and action mechanism of food-derived PAs are diverse, which makes it is difficult to evaluate the performance of PAs which is why the commercial application of PAs is still in its infancy. This article focuses on reviewing the preparation, purification, and characterization methods of food-derived PAs, and expounds the latest progress in performance evaluation and potential applications, in order to provide an effective reference for subsequent related research of PAs.
Collapse
Affiliation(s)
- Mingfei Pan
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (M.P.); (K.L.); (J.Y.); (S.L.); (S.W.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Kaixin Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (M.P.); (K.L.); (J.Y.); (S.L.); (S.W.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jingying Yang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (M.P.); (K.L.); (J.Y.); (S.L.); (S.W.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shengmiao Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (M.P.); (K.L.); (J.Y.); (S.L.); (S.W.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shan Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (M.P.); (K.L.); (J.Y.); (S.L.); (S.W.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (M.P.); (K.L.); (J.Y.); (S.L.); (S.W.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
7
|
Lee SY, Hur SJ. Mechanisms of Neuroprotective Effects of Peptides Derived from Natural Materials and Their Production and Assessment. Compr Rev Food Sci Food Saf 2019; 18:923-935. [DOI: 10.1111/1541-4337.12451] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/14/2019] [Accepted: 03/18/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Seung Yun Lee
- Dept. of Animal Science and TechnologyChung‐Ang Univ. 4726 Seodong‐daero, Daedeok‐myeon Anseong‐si Gyeonggi 17546 Republic of Korea
| | - Sun Jin Hur
- Dept. of Animal Science and TechnologyChung‐Ang Univ. 4726 Seodong‐daero, Daedeok‐myeon Anseong‐si Gyeonggi 17546 Republic of Korea
| |
Collapse
|
8
|
Tang YW, Shi CJ, Yang HL, Cai P, Liu QH, Yang XL, Kong LY, Wang XB. Synthesis and evaluation of isoprenylation-resveratrol dimer derivatives against Alzheimer's disease. Eur J Med Chem 2019; 163:307-319. [PMID: 30529634 DOI: 10.1016/j.ejmech.2018.11.040] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/16/2018] [Accepted: 11/16/2018] [Indexed: 01/09/2023]
Abstract
A series of resveratrol dimer derivatives against Alzheimer's disease (AD) was obtained by structural modification and transformation using resveratrol as substrate. Biological analysis revealed that these derivatives had moderate inhibitory activity against human monoamine oxidase B (hMAO-B). In particular, 3 and 7 showed the better inhibitory activity for hMAO-B (IC50 = 3.91 ± 0.23 μM, 0.90 ± 0.01 μM) respectively. Compound 3 (IC50 = 46.95 ± 0.21 μM for DPPH, 1.43 and 1.74 trolox equivalent by ABTS and FRAP method respectively), and 7 (IC50 = 35.33 ± 0.15 μM for DPPH, 1.70 and 1.97 trolox equivalent by ABTS method and FRAP method respectively) have excellent antioxidant effects. Cellular assay shown that 3 and 7 had lower toxicity and were resistant to neurotoxicity induced by oxidative toxins (H2O2, rotenone and oligomycin-A). More importantly, the selected compounds have neuroprotective effects against ROS generation, H2O2-induced apoptosis and a significant in vitro anti-inflammatory activity. The results of the parallel artificial membrane permeability assay for blood-brain barrier indicated that 3 and 7 would be predominant to cross the blood-brain barrier. In this study, mouse microglia BV2 cells were used to establish cell oxidative stress injury model with H2O2 and to explore the protective effect and mechanism of 3 and 7. In general, 3 and 7 can be considered candidates for potential treatment of AD.
Collapse
Affiliation(s)
- Yan-Wei Tang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Cun-Jian Shi
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Hua-Li Yang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Pei Cai
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qiao-Hong Liu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xue-Lian Yang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Ling-Yi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Xiao-Bing Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
9
|
Wang MP, Lu W, Yang J, Wang JM, Yang XQ. Preparation and characterisation of isoflavone aglycone-rich calcium-binding soy protein hydrolysates. Int J Food Sci Technol 2017. [DOI: 10.1111/ijfs.13502] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Meng-Ping Wang
- National Engineering Laboratory of Wheat and Corn Further Processing; School of Food Science and Engineering; South China University of Technology; Guangzhou 510640 China
| | - Wei Lu
- School of Biological Engineering and Food Science; Hubei University of Technology; Wuhan 430064 China
| | - Juan Yang
- School of Chemistry and Chemical Engineering; Lingnan Normal University; Zhanjiang 524048 China
| | - Jin-Mei Wang
- National Engineering Laboratory of Wheat and Corn Further Processing; School of Food Science and Engineering; South China University of Technology; Guangzhou 510640 China
| | - Xiao-quan Yang
- National Engineering Laboratory of Wheat and Corn Further Processing; School of Food Science and Engineering; South China University of Technology; Guangzhou 510640 China
| |
Collapse
|
10
|
Cermeño M, FitzGerald RJ, O'Brien NM. In vitro antioxidant and immunomodulatory activity of transglutaminase-treated sodium caseinate hydrolysates. Int Dairy J 2016. [DOI: 10.1016/j.idairyj.2016.08.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Acetoacetic acid induces oxidative stress to inhibit the assembly of very low density lipoprotein in bovine hepatocytes. J DAIRY RES 2016; 83:442-446. [PMID: 27692001 DOI: 10.1017/s0022029916000546] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Dairy cows with fatty liver or ketosis exhibit hyperketonemia, oxidative stress, and a low rate of very low density lipoprotein (VLDL) assembly, and there may be a potential link among these characteristics. Therefore, the objective of this study was to determine the effect of acetoacetic acid (AcAc) on the assembly of VLDL in cow hepatocytes. Cultured cow hepatocytes were treated with different concentrations of AcAc with or without N-acetylcysteine (NAC, an antioxidant). AcAc treatment decreased the mRNA expression and activities of antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px), and significantly increased malondialdehyde (MDA) content, indicative of oxidative stress. Furthermore, AcAc treatment significantly down-regulated the mRNA expression of apolipoprotein B100 (ApoB100), apolipoprotein E (ApoE), and low density lipoprotein receptor (LDLR), which thus decreased VLDL assembly and increased triglyceride (TG) accumulation in these bovine hepatocytes. Importantly, NAC relieved AcAc-induced oxidative stress and increased VLDL assembly. In summary, these results suggest that AcAc-induced oxidative stress affects the assembly of VLDL, which increases TG accumulation in bovine hepatocytes.
Collapse
|
12
|
Dairy cheese consumption ameliorates single-meal sodium-induced cutaneous microvascular dysfunction by reducing ascorbate-sensitive oxidants in healthy older adults. Br J Nutr 2016; 116:658-65. [PMID: 27363679 DOI: 10.1017/s0007114516002579] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chronic dairy product intake is associated with improved cardiovascular outcomes, whereas high dietary Na impairs endothelial function through increased oxidative stress and reduced nitric oxide (NO) bioavailability. The purpose of this study was to compare the effect of acute cheese consumption with consumption of Na from non-dairy sources on microvascular function. We hypothesised that dairy cheese ingestion would augment NO-dependent vasodilation compared with Na from non-dairy sources. On five visits, fourteen subjects (61 (sem 2) years, eight male/six female) consumed either 85 g dairy cheese (560 mg Na), 85 g soya cheese (560 mg Na), 65 g pretzels (560 mg Na), 170 g dairy cheese (1120 mg Na) or 130 g pretzels (1120 mg Na). Two intradermal microdialysis fibres were inserted in the ventral forearm for delivery of lactated Ringer's solution or 10 mm-ascorbate (antioxidant) during local skin heating (approximately 50 min). Erythrocyte flux was measured continuously by laser-Doppler flowmetry (LDF), and cutaneous vascular conductance (CVC=LDF/mean arterial pressure) was normalised as %CVCmax (28 mm-sodium nitroprusside). Following a plateau in CVC, 15 mm-N G -nitro-l-arginine-methyl-ester was perfused to quantify NO-dependent vasodilation (approximately 45 min). NO-dependent vasodilation was greater following consumption of dairy products (560 mg Na 57 (sem 3) %) (1120 mg Na 55 (sem 5) %) compared with soya (560 mg Na 42 (sem 3) %; P=0·002) or pretzels (560 mg Na 43 (sem 4) %; P=0·004) (1120 mg Na 46 (sem 3) %; P=0·04). Ascorbate augmented NO-dependent vasodilation following intake of soya (control: 42 (sem 3) v. ascorbate: 54 (sem 3) %; P=0·01) or pretzels (560 mg Na; control: 43 (sem 4) v. ascorbate: 56 (sem 3) %; P=0·006) (1120 mg Na; control: 46 (sem 5) v. ascorbate: 56 (sem 3) %; P=0·02), but not dairy products. Na ingestion via dairy products was associated with greater NO-dependent vasodilation compared with non-dairy products, a difference that was ameliorated with ascorbate perfusion. The antioxidant properties of dairy proteins may protect against Na-induced reductions in NO-dependent dilation.
Collapse
|