1
|
Li B, Khan MZ, Khan IM, Ullah Q, Cisang ZM, Zhang N, Wu D, Huang B, Ma Y, Khan A, Jiang N, Zahoor M. Genetics, environmental stress, and amino acid supplementation affect lactational performance via mTOR signaling pathway in bovine mammary epithelial cells. Front Genet 2023; 14:1195774. [PMID: 37636261 PMCID: PMC10448190 DOI: 10.3389/fgene.2023.1195774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/26/2023] [Indexed: 08/29/2023] Open
Abstract
Mammary glands are known for their ability to convert nutrients present in the blood into milk contents. In cows, milk synthesis and the proliferation of cow mammary epithelial cells (CMECs) are regulated by various factors, including nutrients such as amino acids and glucose, hormones, and environmental stress. Amino acids, in particular, play a crucial role in regulating cell proliferation and casein synthesis in mammalian epithelial cells, apart from being building blocks for protein synthesis. Studies have shown that environmental factors, particularly heat stress, can negatively impact milk production performance in dairy cattle. The mammalian target of rapamycin complex 1 (mTORC1) pathway is considered the primary signaling pathway involved in regulating cell proliferation and milk protein and fat synthesis in cow mammary epithelial cells in response to amino acids and heat stress. Given the significant role played by the mTORC signaling pathway in milk synthesis and cell proliferation, this article briefly discusses the main regulatory genes, the impact of amino acids and heat stress on milk production performance, and the regulation of mTORC signaling pathway in cow mammary epithelial cells.
Collapse
Affiliation(s)
- Bin Li
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Regional Academy of Agricultural Sciences, Lhasa, China
| | - Muhammad Zahoor Khan
- Liaocheng Research Institute of Donkey High‐Efficiency Breeding and Ecological Feeding, Agricultural Science and Engineering School, Liaocheng University, Liaocheng, China
- Faculty of Veterinary and Animal Sciences, The University of Agriculture, Dera Ismail Khan, Pakistan
| | - Ibrar Muhammad Khan
- Anhui Province Key Laboratory of Embryo Development and Reproduction Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China
| | - Qudrat Ullah
- Faculty of Veterinary and Animal Sciences, The University of Agriculture, Dera Ismail Khan, Pakistan
| | - Zhuo-Ma Cisang
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Regional Academy of Agricultural Sciences, Lhasa, China
| | - Nan Zhang
- Tibet Autonomous Region Animal Husbandry Station, Lhasa, China
| | - Dan Wu
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Regional Academy of Agricultural Sciences, Lhasa, China
| | - Bingjian Huang
- Liaocheng Research Institute of Donkey High‐Efficiency Breeding and Ecological Feeding, Agricultural Science and Engineering School, Liaocheng University, Liaocheng, China
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Yulin Ma
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Adnan Khan
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Nan Jiang
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Regional Academy of Agricultural Sciences, Lhasa, China
| | - Muhammad Zahoor
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
2
|
An G, Park J, Lim W, Song G. Folpet promotes apoptosis of bovine mammary epithelial cells via disruption of redox homeostasis and activation of MAPK cascades. Food Chem Toxicol 2023; 175:113709. [PMID: 36889428 DOI: 10.1016/j.fct.2023.113709] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/22/2023] [Accepted: 03/04/2023] [Indexed: 03/08/2023]
Abstract
Folpet, a phthalimide fungicide, is an agrochemical used to prevent fungal diseases in several crops. The toxicity of folpet has been demonstrated in Cyprinus carpio, pigs, and the human respiratory system. However, despite the possibilities of ingestion of folpet through feed, detrimental influences of folpet on dairy cattle have not been documented. Thus, this study aimed to record the harmful effects of folpet on the bovine mammary system and milk production using mammary epithelial cells (MAC-T cells), which play an essential role in the maintenance of yield and quality of milk production. In this study, we first confirmed that folpet exhibited cytotoxicity against MAC-T cells in both 2D and 3D cultures. Folpet treatment caused apoptosis, dysregulated intracellular calcium levels, and mitochondrial membrane potential, leading to cell death. We further demonstrated the induction of oxidative stress upon folpet treatment by assessing reactive oxygen species (ROS) content and lipid peroxidation in MAC-T cells. ROS generation following folpet treatment induced activation of MAPK cascades, including ERK1/2, JNK, and p38 signaling. This is the first report highlighting the detrimental impacts of folpet on bovine mammary glands and, consequently, the dairy industry by elucidating intracellular mechanisms using MAC-T cells.
Collapse
Affiliation(s)
- Garam An
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Junho Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Whasun Lim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
3
|
Han M, Zhang M. The regulatory mechanism of amino acids on milk protein and fat synthesis in mammary epithelial cells: a mini review. Anim Biotechnol 2021; 34:402-412. [PMID: 34339350 DOI: 10.1080/10495398.2021.1950743] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Mammary epithelial cell (MEC) is the basic unit of the mammary gland that synthesizes milk components including milk protein and milk fat. MECs can sense to extracellular stimuli including nutrients such as amino acids though different sensors and signaling pathways. Here, we review recent advances in the regulatory mechanism of amino acids on milk protein and fat synthesis in MECs. We also highlight how these mechanisms reflect the amino acid requirements of MECs and discuss the current and future prospects for amino acid regulation in milk production.
Collapse
Affiliation(s)
- Meihong Han
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Minghui Zhang
- College of Animal Science, Yangtze University, Jingzhou, China
| |
Collapse
|
4
|
Chen Q, Deng X, Hu X, Guan S, He M, Wang Y, Wei B, Zhang J, Zhao H, Yao W, Jin F, Liu Y, Chen J, Olapade OI, Wu H, Wei M. Breast Cancer Risk-Associated SNPs in the mTOR Promoter Form De Novo KLF5- and ZEB1-Binding Sites that Influence the Cellular Response to Paclitaxel. Mol Cancer Res 2019; 17:2244-2256. [PMID: 31467112 DOI: 10.1158/1541-7786.mcr-18-1072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/03/2019] [Accepted: 08/26/2019] [Indexed: 12/24/2022]
Abstract
ZEB1 (a positive enhancer) and KLF5 (a negative silencer) affect transcription factors and play inherently conserved roles in tumorigenesis and multidrug resistance. In humans, the rs2295080T-allele at the mTOR promoter locus has been associated with human cancer risk; however, the 63 bp spacing of another SNP rs2295079 has not been identified. Here, we discovered, for the first time, that rs2295079 (-78C/G) and rs2295080 (-141G/T) formed linkage haplotypes, with Ht1 (-78C/-141G) and Ht2 (-78G/-141T) being dominant, which were associated with distinct susceptibility to breast cancer, response to paclitaxel, and clinical outcomes in breast cancer. At the cellular level, compared with Ht1, Ht2 exhibits a much stronger effect on promoting mTOR expression, leading to enhanced tumor cell growth and strengthened resistance to PTX treatment. Mechanistically, the -141T allele of Ht2 creates a novel ZEB1-binding site; meanwhile, the -78C allele of Ht1 exists as an emerging KLF5-binding site, which synergistically induces promote/inhibit mTOR expression, cell proliferation, and excretion of cytotoxic drugs through the ZEB1/KLF5-mTOR-CCND1/ABCB1 cascade, thereby affecting the response to paclitaxel treatment in vivo and in vitro. Our results suggest the existence of a ZEB1/KLF5-mTOR-CCND1/ABCB1 axis in human cells that could be involved in paclitaxel response pathways and functionally regulate interindividualized breast cancer susceptibility and prognosis. IMPLICATIONS: This study highlights the function of haplotypes of mTOR -78C/-141G and -78G/-141T, in affecting breast cancer susceptibility and paclitaxel response regulated by ZEB1/KLF5-mTOR-CCND1/ABCB1 axis.
Collapse
Affiliation(s)
- Qiuchen Chen
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, China
| | - Xiaolan Deng
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, China.,Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, California
| | - Xiaoyun Hu
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, China
| | - Shu Guan
- Department of Breast Surgery, First Hospital of China Medical University, Shenyang, China
| | - Miao He
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, China
| | - Yilin Wang
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, China
| | - Binbin Wei
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, China
| | - Jing Zhang
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, China
| | - Haishan Zhao
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, China
| | - Weifan Yao
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, China
| | - Feng Jin
- Department of Breast Surgery, First Hospital of China Medical University, Shenyang, China
| | - Yong Liu
- Department of Clinical Laboratory, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jianjun Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, California
| | | | - Huizhe Wu
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, China.
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, China.
| |
Collapse
|