1
|
Shalash AO, Hussein WM, Skwarczynski M, Toth I. Hookworm infection: Toward development of safe and effective peptide vaccines. J Allergy Clin Immunol 2021; 148:1394-1419.e6. [PMID: 34872650 DOI: 10.1016/j.jaci.2021.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/07/2021] [Accepted: 10/18/2021] [Indexed: 11/28/2022]
Abstract
Hookworms are hematophagous nematode parasites that have infected a billion people worldwide. Anthelmintic drugs have limited efficacy and do not prevent reinfection. Therefore, prophylactic vaccines are in high demand. Whole parasite vaccines are allergic and unsafe; thus, research into subunit vaccines has been warranted. A comprehensive overview of protein or peptide subunit vaccines' safety, protective efficacy, and associated immune responses is provided herein. The differences between the immune responses against hookworm infection by patients from epidemic versus nonepidemic areas are discussed in detail. Moreover, the different immunologic mechanisms of protection are discussed, including those that rely on allergic and nonallergic humoral and antibody-dependent cellular responses. The allergic and autoimmune potential of hookworm antigens is also explored, as are the immunoregulatory responses induced by the hookworm secretome. The potential of oral mucosal immunizations has been overlooked. Oral immunity against hookworms is a long-lived and safer immune response that is associated with elimination of infection and protective against reinfections. However, the harsh conditions of the gastrointestinal environment necessitates special oral delivery systems to unlock vaccines' protective potential. The potential for development of safer and more effective peptide- and protein-based anthelmintic vaccines is explored herein.
Collapse
Affiliation(s)
- Ahmed O Shalash
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Waleed M Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia.
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia; School of Pharmacy, The University of Queensland, Woolloongabba, Queensland, Australia.
| |
Collapse
|
3
|
Filbey K, Bouchery T, Le Gros G. The role of ILC2 in hookworm infection. Parasite Immunol 2017; 40. [PMID: 28369954 DOI: 10.1111/pim.12429] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/22/2017] [Indexed: 01/01/2023]
Abstract
Hookworm is a major public health concern, yet still relatively little is known about the immunological responses involved in human infection. Animal studies are mainly confined to using the natural rodent helminth Nippostrongylus brasiliensis as this has been proposed as the most accurate model of hookworm infection in the mouse, with both its life cycle and the immune responses it invokes having been extremely well characterized. In this review, we examine the roles that type 2 innate lymphoid cells (ILC2s) play in immunity and host tolerance to hookworm infection, particularly N. brasiliensis. This includes their role in the initiation and regulation of immune responses, as well as in the resolution and limitation of tissue damage required after an infection with a large organism, such as a helminth.
Collapse
Affiliation(s)
- K Filbey
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - T Bouchery
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - G Le Gros
- Malaghan Institute of Medical Research, Wellington, New Zealand
| |
Collapse
|
4
|
Loukas A, Hotez PJ, Diemert D, Yazdanbakhsh M, McCarthy JS, Correa-Oliveira R, Croese J, Bethony JM. Hookworm infection. Nat Rev Dis Primers 2016; 2:16088. [PMID: 27929101 DOI: 10.1038/nrdp.2016.88] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Hookworms are soil-transmitted nematode parasites that can reside for many years in the small intestine of their human hosts; Necator americanus is the predominant infecting species. Adult worms feed on the blood of a host and can cause iron deficiency anaemia, especially in high-risk populations (children and women of childbearing age). Almost 500 million people in developing tropical countries are infected, and simulation models estimate that hookworm infection is responsible for >4 million disability-adjusted life years lost annually. Humans mount an immune response to hookworms, but it is mostly unsuccessful at removing adult worms from the bowel. Accordingly, the host switches to an immune-tolerant state that enables hookworms to reside in the gut for many years. Although anthelmintic drugs are available and widely used, their efficacy varies and the drugs do not prevent reinfection. Thus, other control strategies aimed at improving water quality, sanitation and hygiene are needed. In addition, efforts are underway to develop a human hookworm vaccine through public-private partnerships. However, hookworms could also be a resource; as hookworms have the capability to regulate the host's inflammation, researchers are experimentally infecting patients to treat some inflammatory diseases as an approach to discover new anti-inflammatory molecules. This area of endeavour might well yield new biotherapeutics for autoimmune and allergic diseases.
Collapse
Affiliation(s)
- Alex Loukas
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, Building E4, James Cook University, McGregor Rd, Smithfield, Cairns, Queensland 4878, Australia
| | - Peter J Hotez
- Departments of Pediatrics and Molecular Virology and Microbiology, National School of Tropical Medicine, Baylor College Of Medicine, Houston, Texas, USA.,Sabin Vaccine Institute, Houston, Texas, USA.,Texas Children's Hospital Center for Vaccine Development, Houston, Texas, USA
| | - David Diemert
- Department of Microbiology, Tropical Medicine and Immunology, George Washington University, Washington DC, USA.,Sabin Vaccine Institute, Washington DC, USA
| | - Maria Yazdanbakhsh
- Department of Parasitology, Leiden University Medical Centre, Leiden, The Netherlands
| | - James S McCarthy
- Queensland Institute of Medical Research (QIMR) Berghofer Medical Research Institute, Brisbane, Queensland, Australia.,University of Queensland, Brisbane, Queensland, Australia
| | | | - John Croese
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, Building E4, James Cook University, McGregor Rd, Smithfield, Cairns, Queensland 4878, Australia.,Department of Gastroenterology, Prince Charles Hospital, Brisbane, Queensland, Australia
| | - Jeffrey M Bethony
- Department of Microbiology, Tropical Medicine and Immunology, George Washington University, Washington DC, USA
| |
Collapse
|
6
|
The mucosal response of hamsters exposed to weekly repeated infections with the hookworm Ancylostoma ceylanicum. J Helminthol 2012; 87:309-17. [PMID: 22892069 DOI: 10.1017/s0022149x12000375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
An experiment was carried out to assess mucosal changes in hamsters exposed to weekly repeated low-intensity infections with the hookworm Ancylostoma ceylanicum. The experiment included control groups of naïve, uninfected hamsters and groups that received a single-pulse primary infection. Changes in the intestinal architecture and in the density of inflammatory cells in the mucosa, including mast cells, goblet cells, Paneth cells and eosinophils were examined in relation to changes in hookworm burdens. As in the single-pulse primary infection, hamsters exposed to repeated infections responded with marked changes in the intestinal architecture and in mucosal populations of inflammatory cells. However, there were distinct differences in the kinetics of the responses to these two types of infection (primary single-pulse and repeated). The reduction in villous height and the increase in crypt depth in animals exposed to repeated infections were both initially slower but eventually equalled and exceeded the responses in hamsters given a chronic primary infection, despite the presence of fewer adult worms in the former. Similarly, changes in the mitotic figures of epithelial cells in the mucosa and the mast cell response were both initially slower and less intense in repeatedly infected hamsters, but eventually exceeded the response to primary infection. Furthermore, the eosinophil response was found to be initially greater in repeated infections and overall more persistent. In contrast, both goblet and Paneth cell responses were less marked in repeatedly infected animals compared to those carrying a primary infection. These results are discussed in the context of host protective resistance to infection with A. ceylanicum.
Collapse
|