Phelan K, Blakeslee AMH, Krause M, Williams JD. First documentation and molecular confirmation of three trematode species (Platyhelminthes: Trematoda) infecting the polychaete Marenzelleria viridis (Annelida: Spionidae).
Parasitol Res 2015;
115:183-94. [PMID:
26385466 DOI:
10.1007/s00436-015-4734-2]
[Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/04/2015] [Indexed: 11/27/2022]
Abstract
Polychaete worms are hosts to a wide range of marine parasites; yet, studies on trematodes using these ecologically important species as intermediate hosts are lacking. During examination of the spionid polychaete Marenzelleria viridis collected on the north shore of Long Island, New York, putative trematode cysts were discovered in the body cavity of these polychaetes. In order to verify these cysts as metacercariae of trematodes, specimens of the eastern mudsnail Ilyanassa obsoleta (a very common first intermediate host of trematodes in the region) were collected for molecular comparison. DNA barcoding using cytochrome C oxidase I regions confirmed the presence of three species of trematodes (Himasthla quissetensis, Lepocreadium setiferoides, and Zoogonus lasius) in both M. viridis and I. obsoleta hosts. Brown bodies were also recovered from polychaetes, and molecular testing confirmed the presence of L. setiferoides and Z. lasius, indicating an immune response of the polychaete leading to encapsulation of the cysts. From the 125 specimens of M. viridis collected in 2014, 95 (76.8 %) were infected with trematodes; of these 95 infected polychaetes, 86 (90.5 %) contained brown bodies. This is the first confirmation that trematodes use M. viridis as a second intermediate host and that this intermediate host demonstrates a clear immune response to metacercarial infection. Future research should explore the role of these polychaetes in trematode life cycles, the effectiveness of the immune response, and transmission pathways to vertebrate definitive hosts.
Collapse