1
|
Poonlaphdecha S, Ribas A, Martínez-Silvestre A, Villa M. New Data on the Larval Stages of Leptophallus nigrovenosus (Digenea, Plagiorchiata). Animals (Basel) 2024; 14:1154. [PMID: 38672302 PMCID: PMC11047363 DOI: 10.3390/ani14081154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/04/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
(1) Background: Leptophallus nigrovenosus, an esophageal parasite that primarily affects water snakes of the genus Natrix, has a known life cycle that involves snail and amphibian hosts. However, the biological aspects, chaetotaxic patterns, and pathogeny of this parasite in its hosts have not been fully elucidated. (2) Methods: Snails (Planorbarius metidjensis) were collected in Spain and examined for cercaria emergence. The larvae were used to experimentally infect Salamandra salamandra, and metacercariae were isolated. Their chaetotaxy was studied using microscopy and scanning electron microscopy. The eye histology was also examined. (3) Results: The cercariae displayed distinctive morphological characteristics. The results of this study revealed three types of ciliated sensory papillae on the cercarial teguments, suggesting an adaptation for host detection and orientation. The metacercariae isolated from subcutaneous tissues showed oval bodies covered in spines. The chaetotaxy patterns matched those of Leptophallinae species. This is the first report of the presence of L. nigrovenosus in the snail P. metidjensis. Additionally, this study detected metacercariae in the eyes of S. salamandra, emphasizing the need for further research on trematode infections in amphibian eyes. (4) Conclusions: Members of the genus Salamandra can serve as secondary intermediate hosts for L. nigrovenosus, and the presence of metacercariae in amphibian eyes may have implications for the survival and habitat management of these amphibians. Understanding this parasite's prevalence, transmission dynamics, and impacts on host populations is crucial for conservation strategies.
Collapse
Affiliation(s)
- Srisupaph Poonlaphdecha
- Parasitology Section, Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain; (S.P.); (M.V.)
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Alexis Ribas
- Parasitology Section, Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain; (S.P.); (M.V.)
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, 08028 Barcelona, Spain
| | | | - Mercedes Villa
- Parasitology Section, Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain; (S.P.); (M.V.)
| |
Collapse
|
2
|
Denisova SA, Shchenkov SV, Lebedenkov VV. Microanatomy and ultrastructure of the nervous system of adult Renicola parvicaudatus (Digenea: Renicolidae). J Morphol 2024; 285:e21672. [PMID: 38361267 DOI: 10.1002/jmor.21672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/10/2023] [Accepted: 12/15/2023] [Indexed: 02/17/2024]
Abstract
The digenean complex life cycle includes various morphological forms with different locomotory and behavioral activities, and the functional specialization of their nervous system is of importance for the transmission of these parasites. Adult digeneans acquire many adaptive features associated with the final settlement in a vertebrate host. Our study describes the general morphology and ultrastructure of the nervous system of the adult renicolid digenean Renicola parvicaudatus parasitizing the renal tubules of herring gulls. Using immunocytochemical and electron microscopic methods, we identified the distinctive characteristics of ganglia and synapses in the studied species. A comparative analysis of the organization of the nervous system of adult individuals and their continuously-swimming stylet cercariae revealed a number of stage-related differences in the composition of ganglia, the distribution of serotonin- and FMRFamide-immunoreactive neurons, the cytomorphology of neuron somata and free sensory endings. Thus, in adults, the presence of FMRFamide-positive neuron somata, accessory muscle bundles in the ganglionic cortex, and eight types of neuronal vesicles was detected, but no glia-like elements were identified. Their neurons are characterized by a larger volume of cytoplasm and also show greater ultrastructural diversity. Although the sensory papillae of adults do not vary in their external morphology as much as those of larvae, their sensory bulbs are more diverse in cytomorphology. Following our previous data on the "support" cell processes related to various tissues of the larvae and considered as glia-like structures, we also briefly present the identified features of the parenchyma, attachment organs and excretory system of adult individuals. The excretory system of adult R. parvicaudatus is characterized by the presence of unique terminal cells with several flame tufts, which are not typical either for the larvae of this species or for other digeneans studied so far. We also used molecular phylogenetic analysis to clarify species identification.
Collapse
Affiliation(s)
- Sofia A Denisova
- Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Sergei V Shchenkov
- Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Vladimir V Lebedenkov
- Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
| |
Collapse
|
3
|
Rinaldi G, Paz Meseguer C, Cantacessi C, Cortés A. Form and Function in the Digenea, with an Emphasis on Host-Parasite and Parasite-Bacteria Interactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1454:3-45. [PMID: 39008262 DOI: 10.1007/978-3-031-60121-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
This review covers the general aspects of the anatomy and physiology of the major body systems in digenetic trematodes, with an emphasis on new knowledge of the area acquired since the publication of the second edition of this book in 2019. In addition to reporting on key recent advances in the morphology and physiology of tegumentary, sensory, neuromuscular, digestive, excretory, and reproductive systems, and their roles in host-parasite interactions, this edition includes a section discussing the known and putative roles of bacteria in digenean biology and physiology. Furthermore, a brief discussion of current trends in the development of novel treatment and control strategies based on a better understanding of the trematode body systems and associated bacteria is provided.
Collapse
Affiliation(s)
- Gabriel Rinaldi
- Department of Life Sciences, Edward Llwyd Building, Aberystwyth University, Aberystwyth, UK
| | - Carla Paz Meseguer
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, School of Pharmacy and Food Sciences, Universitat de València, Valencia, Spain
| | - Cinzia Cantacessi
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Alba Cortés
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, School of Pharmacy and Food Sciences, Universitat de València, Valencia, Spain.
| |
Collapse
|
4
|
Galaktionov KV, Solovyeva AI, Blakeslee AMH, Skírnisson K. Overview of renicolid digeneans (Digenea, Renicolidae) from marine gulls of northern Holarctic with remarks on their species statuses, phylogeny and phylogeography. Parasitology 2022; 150:1-23. [PMID: 36321423 PMCID: PMC10090622 DOI: 10.1017/s0031182022001500] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/02/2022] [Accepted: 10/14/2022] [Indexed: 12/13/2022]
Abstract
Renicolid digeneans parasitize aquatic birds. Their intramolluscan stages develop in marine and brackish-water gastropods, while metacercariae develop in molluscs and fishes. The systematics of renicolids is poorly developed, their life cycles are mostly unknown, and the statuses of many species require revision. Here, we establish based on integrated morphological and molecular data that adult renicolids from gulls Larus argentatus and Larus schistisagus and sporocysts and cercariae of Cercaria parvicaudata from marine snails Littorina spp. are life-cycle stages of the same species. We name it Renicola parvicaudatus and synonymized with it Renicola roscovitus. An analysis of the cox1 gene of R. parvicaudatus from Europe, North America and North Asia demonstrates a low genetic divergence, suggesting that this species has formed quite recently (perhaps during last glacial maximum) and that interregional gene flow is high. In Littorina saxatilis and L. obtusata from the Barents Sea, molecular analysis has revealed intramolluscan stages of Cercaria littorinae saxatilis VIII, a cryptic species relative to R. parvicaudatus. In the molecular trees, Renicola keimahuri from L. schistisagus belongs to another clade than R. parvicaudatus. We show that the species of this clade have cercariae of Rhodometopa group and outline morphological and behavioural transformations leading from xiphidiocercariae to these larvae. Molecular analysis has revealed 3 main phylogenetic branches of renicolids, differing in structure of adults, type of cercariae and host range. Our results elucidate the patterns of host colonization and geographical expansion of renicolids and pave the way to the solution of some long-standing problems of their classification.
Collapse
Affiliation(s)
- Kirill V. Galaktionov
- Laboratory of Parasitic Worms and Protists, Zoological Institute of Russian Academy of Sciences, St. Petersburg 199034, Russia
| | - Anna I. Solovyeva
- Laboratory of Parasitic Worms and Protists, Zoological Institute of Russian Academy of Sciences, St. Petersburg 199034, Russia
- Laboratory of Non-Coding DNA, Institute of Cytology of Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - April M. H. Blakeslee
- Department of Biology, East Carolina University, Greenville, NC, USA
- Marine Invasions Lab, Smithsonian Environmental Research Center, Edgewater, MD, USA
| | - Karl Skírnisson
- Laboratory of Parasitology, Institute for Experimental Pathology, University of Iceland, Keldur, Reykjavik, Iceland
| |
Collapse
|
5
|
Yoneva A, van Beest GS, Born-Torrijos A. Search, find, and penetrate: ultrastructural data of furcocercariae of Cardiocephaloides longicollis (Digenea, Strigeidae) explain their transmission and infection strategy into fish hosts. Parasitol Res 2022; 121:877-889. [PMID: 35091840 DOI: 10.1007/s00436-022-07448-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 01/23/2022] [Indexed: 11/28/2022]
Abstract
The present study provides an overview of the structures linked to fish host finding, recognition, and invasion of one of the most commonly occurring morphotypes among trematodes, furcocercariae. For this, we use free-swimming cercariae of the strigeid Cardiocephaloides longicollis (Rudolphi 1819) Dubois, 1982. Their elongated cercarial body and bifurcated tail are covered by a tegument with an irregular surface, showing numerous folds arranged in different directions and a typical syncytial organization. Both the body and the bifurcated tail are covered with short spines, rose-thorn shaped, as well as four types of sensory papillae, distinguished by the presence or absence of a cilium, its length, and their position on the cercarial body. These papillae are especially important for free-living stages that rely on external stimuli to locate and adhere to the host. A specialized anterior organ is located at the anterior part of the cercariae and is encircled by a triangle-shaped group of enlarged pre-oral spines followed by a transverse row of enlarged post-oral spines that, together with the sensory papillae, allow active finding, recognition, and penetration into fish. The ventral sucker, covered with inner-oriented spines, sensory papillae, and cilia, helps during this process. The cercariae of C. longicollis possess three types of gland cells (a head gland and two types of penetration glands), each containing different types of secretory granules that play a role in host invasion. The protonephridial excretory system consists of an excretory bladder, a system of collecting tubules, flame cells, and two excretory pores in the middle of each furcae, which serve to control osmoregulation in their marine environment, as well as to eliminate metabolic waste. Together with the four types of sensory endings, the central ganglion forms the nervous system. Our results add novel information on the ultrastructure of strigeid furcocercariae, being essential to interpret these data in relation of their functional role to better understand the transmission and penetration strategies that cercariae display to infect their fish hosts.
Collapse
Affiliation(s)
- Aneta Yoneva
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, 370 05, České Budějovice, Czech Republic.,Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin Street, Sofia, 1113, Bulgaria
| | - Gabrielle S van Beest
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, 370 05, České Budějovice, Czech Republic.,Cavanilles Institute for Biodiversity and Evolutionary Biology, Science Park, University of Valencia, 46980, Paterna, Valencia, Spain
| | - Ana Born-Torrijos
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, 370 05, České Budějovice, Czech Republic.
| |
Collapse
|
6
|
Galaktionov KV, Solovyeva AI, Miroliubov A. Elucidation of Himasthla leptosoma (Creplin, 1829) Dietz, 1909 (Digenea, Himasthlidae) life cycle with insights into species composition of the north Atlantic Himasthla associated with periwinkles Littorina spp. Parasitol Res 2021; 120:1649-1668. [PMID: 33712931 DOI: 10.1007/s00436-021-07117-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 03/04/2021] [Indexed: 11/24/2022]
Abstract
Trematodes of the genus Himasthla are usual parasites of coastal birds in nearshore ecosystems of northern European seas and the Atlantic coast of North America. Their first intermediate hosts are marine and brackish-water gastropods, while second intermediate hosts are various invertebrates. We analysed sequences of partial 28S rRNA and nad1 genes and the morphology of intramolluscan stages, particularly cercariae of Himasthla spp. parasitizing intertidal molluscs Littorina spp. in the White Sea, the Barents Sea and coasts of North Norway and Iceland. We showed that only three Himasthla spp. are associated with periwinkles in these regions. Intramolluscan stages of H. elongata were found in Littorina littorea, of H. littorinae, in both L. saxatilis and L. obtusata, and of Cercaria littorinae obtusatae, predominantly, in L. obtusata. Other Himasthla spp. previously reported from Littorina spp. in North Atlantic are either synonymous with one of these species or described erroneously. Based on a comparison of newly generated 28S rDNA sequences with GenBank data, rediae and cercariae of C. littorinae obtusatae were identified as belonging to H. leptosoma. Some previously unknown morphological features of young and mature rediae and cercariae of the three Himasthla spp. are described. We provide a key to the rediae and highlight characters important for identification of cercariae. Genetic diversity within the studied species was only partially determined by their specificity to the molluscan host. The nad1 network constructed for H. leptosoma lacked geographical structure, which is explained by a high gene flow owing to highly vagile definitive hosts, shorebirds.
Collapse
Affiliation(s)
- Kirill V Galaktionov
- Laboratory of Parasitic Worms and Protists, Zoological Institute of Russian Academy of Sciences, St. Petersburg, 199034, Russia.
| | - Anna I Solovyeva
- Laboratory of Parasitic Worms and Protists, Zoological Institute of Russian Academy of Sciences, St. Petersburg, 199034, Russia.,Laboratory of Non-Coding DNA, Institute of Cytology of Russian Academy of Sciences, St. Petersburg, 194064, Russia
| | - Alexei Miroliubov
- Laboratory of Parasitic Worms and Protists, Zoological Institute of Russian Academy of Sciences, St. Petersburg, 199034, Russia
| |
Collapse
|
7
|
Denisova SA, Shchenkov SV. Fine structure of the nervous system of Cercaria parvicaudata Stunkard & Shaw, 1931 (Digenea, Renicolidae). J Morphol 2020; 281:765-777. [PMID: 32369667 DOI: 10.1002/jmor.21137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/18/2020] [Accepted: 04/22/2020] [Indexed: 11/10/2022]
Abstract
The biology of free-living and parasitic Platyhelminthes is diverse. Taking into account the widespread prevalence of parasitic flatworms, Digenea is the least studied group regarding the fine structure of nervous system especially of the cercarial life stage. Here, we present a description of the fine structure of central nervous system (CNS) and two types of uniciliate sensory papillae of xiphidiocercaria Cercaria parvicaudata (Microphalloidea, Renicolidae). The present study documents that C. parvicaudata has a complex nervous system that includes a well-developed ganglion with a cortex of perikarya and glia-like sheaths, myelin-like structures within one of the dorsal nerve cords and four types of polarized synapses between neurites. Different types of neurons in the CNS could not be distinguished on ultrastructural level due to high similarity in their fine structure. Shared polarized synapses with high electron density of presynaptic components are numerous in the neuropile and nerve cords of this larva. Within the larval body, we detected specialized "support" processes that relate to different tissues. Some "support" processes are also closely related to the nervous system of C. parvicaudata, where they are considered as glia-like structures. In this case, the fine structure of glia-like "support" cells of C. parvicaudata differs from those described as glia-like cells in adult flatworms. We suggest a wide prevalence of glia-like cells among cercariae, as well as the fact that glia-like structures in digenean nervous systems can develop from various nonneuronal tissues.
Collapse
Affiliation(s)
- Sofia A Denisova
- Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Sergei V Shchenkov
- Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
| |
Collapse
|