1
|
Vellasamy KM, Vasu C, Puthucheary SD, Vadivelu J. Comparative analysis of extracellular enzymes and virulence exhibited by Burkholderia pseudomallei from different sources. Microb Pathog 2009; 47:111-7. [PMID: 19524661 DOI: 10.1016/j.micpath.2009.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Revised: 06/02/2009] [Accepted: 06/04/2009] [Indexed: 10/20/2022]
Abstract
To evaluate the potential role of extracellular proteins in the pathogenicity and virulence of Burkholderia pseudomallei, the activities of several enzymes in the culture filtrates of nine clinical and six environmental isolates were investigated in vitro and in vivo in ICR strain of mice. The production of protease, phosphatase, phospholipase C, superoxide dismutase, catalase and peroxidase were detected in the culture filtrates of all the 15 isolates at different time points of growth 4-24h. Over time, activity of each enzyme at each time point varied. Profile of secretion was similar among the 15 isolates irrespective of source, that is clinical or environmental. Catalase, phosphatase and phospholipase C were found to be increased in 60-100% of the isolates post-passage in mice. In vivo inoculation studies in ICR mice demonstrated a wide difference in their ability to cause bacteraemia, splenic or external abscesses and mortality rate ranged from few days to several weeks.
Collapse
|
2
|
Armstrong TW, Haas CN. A quantitative microbial risk assessment model for Legionnaires' disease: animal model selection and dose-response modeling. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2007; 27:1581-96. [PMID: 18093054 DOI: 10.1111/j.1539-6924.2007.00990.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Legionnaires' disease (LD), first reported in 1976, is an atypical pneumonia caused by bacteria of the genus Legionella, and most frequently by L. pneumophila (Lp). Subsequent research on exposure to the organism employed various animal models, and with quantitative microbial risk assessment (QMRA) techniques, the animal model data may provide insights on human dose-response for LD. This article focuses on the rationale for selection of the guinea pig model, comparison of the dose-response model results, comparison of projected low-dose responses for guinea pigs, and risk estimates for humans. Based on both in vivo and in vitro comparisons, the guinea pig (Cavia porcellus) dose-response data were selected for modeling human risk. We completed dose-response modeling for the beta-Poisson (approximate and exact), exponential, probit, logistic, and Weibull models for Lp inhalation, mortality, and infection (end point elevated body temperature) in guinea pigs. For mechanistic reasons, including low-dose exposure probability, further work on human risk estimates for LD employed the exponential and beta-Poisson models. With an exposure of 10 colony-forming units (CFU) (retained dose), the QMRA model predicted a mild infection risk of 0.4 (as evaluated by seroprevalence) and a clinical severity LD case (e.g., hospitalization and supportive care) risk of 0.0009. The calculated rates based on estimated human exposures for outbreaks used for the QMRA model validation are within an order of magnitude of the reported LD rates. These validation results suggest the LD QMRA animal model selection, dose-response modeling, and extension to human risk projections were appropriate.
Collapse
Affiliation(s)
- T W Armstrong
- ExxonMobil Biomedical Sciences, Inc., Annandale, NJ, USA.
| | | |
Collapse
|
3
|
Schott EJ, Pecher WT, Okafor F, Vasta GR. The protistan parasite Perkinsus marinus is resistant to selected reactive oxygen species. Exp Parasitol 2004; 105:232-40. [PMID: 14990317 DOI: 10.1016/j.exppara.2003.12.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2003] [Revised: 12/10/2003] [Accepted: 12/12/2003] [Indexed: 10/26/2022]
Abstract
The parasite Perkinsus marinus has devastated natural and farmed oyster populations along the Atlantic and Gulf coasts of North America. When viable P. marinus trophozoites are engulfed by oyster hemocytes, the typical accumulation of reactive oxygen species (ROS) normally associated with phagocyte activity is not observed. One hypothesis to explain this is that the parasite rapidly removes ROS. A manifestation of efficient ROS removal should be a high level of resistance to exogenous ROS. We investigated the in vitro susceptibility of P. marinus to ROS as compared to the estuarine bacterium Vibrio splendidus. We find that P. marinus is markedly less susceptible than V. splendidus to superoxide and hydrogen peroxide (H(2)O(2)), but equally sensitive to hypochlorite. Viable P. marinus trophozoites degrade H(2)O(2) in vitro, but lack detectable catalase activity. However, extracts contain an ascorbate dependent peroxidase activity that may contribute to H(2)O(2) removal in vitro and in vivo.
Collapse
Affiliation(s)
- Eric J Schott
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, 701 East Pratt Street, Baltimore, MD 21202, USA
| | | | | | | |
Collapse
|
4
|
Abstract
Cystic forms of Borrelia burgdorferi might represent a low metabolic activity state or phase of B. burgdorferi cells that allows the spirochete to survive in a hostile environment until conditions are favourable to multiply again. In this study we evaluated the rate of cyst formation induced by oxidative stress, pH variations, and heating, reconversion of cysts to vegetative forms, and some aspects of their metabolic activity. We observed cyst formation in the presence of extreme pH values, and at high temperature, but the best production of cystic forms was observed in the presence of H2O2. When transferred to BSK II medium, the cystic forms reconverted to spirochetes in relation to their age and type of induction treatment. Furthermore, we demonstrated a low metabolic activity of cystic forms by measuring amino acid incorporation. Overall, these data suggest that the phenomenon of conversion to cysts by B. burgdorferi provides a limited survival potential. This short-term survival, however, gives borreliae an additional chance to overcome unfavourable environmental conditions.
Collapse
Affiliation(s)
- R Murgia
- Spirochete Laboratory, Dipartimento di Scienze Biomediche, Universita' degli Studi di Trieste, Via Fleming 22, 34127 Trieste, Italy.
| | | |
Collapse
|
5
|
Abstract
Few microorganisms evade killing by neutrophils. Summarized here are the mechanisms used by Yersinia, group A streptococci, Helicobacter, Ehrlichia and Francisella to block phagocytosis, disrupt phagosome maturation or perturb the respiratory burst. Also discussed are mechanisms used by neutrophils to control organisms that replicate inside macrophages.
Collapse
Affiliation(s)
- Lee-Ann H Allen
- Department of Medicine and the Inflammation Program, MTF D154, University of Iowa and the VA Medical Center, 2501 Crosspark Road, Coralville, Iowa City, IA 55241, USA.
| |
Collapse
|
6
|
Murgia R, Garcia R, Cinco M. Leptospires are killed in vitro by both oxygen-dependent and -independent reactions. Infect Immun 2002; 70:7172-5. [PMID: 12438405 PMCID: PMC133083 DOI: 10.1128/iai.70.12.7172-7175.2002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study reports for the first time that leptospires are killed by H(2)O(2) and by low-molecular-weight primary granule components, which are agents normally released by neutrophils upon stimulation. Although both pathogenic and nonpathogenic strains were sensitive to H(2)O(2)-mediated killing, nonpathogenic organisms were found to be more susceptible. In addition, the killing of leptospires by H(2)O(2) was found to be independent of the presence of the neutrophil primary granule component myeloperoxidase and therefore not a consequence of halogenation reactions. We have also determined that leptospires are significantly sensitive only to primary granule components and, among those, to proteins and/or peptides of less than 30 kDa.
Collapse
Affiliation(s)
- Rossella Murgia
- Department of Biomedical Sciences, University of Trieste, Italy
| | | | | |
Collapse
|
7
|
James BW, Mauchline WS, Fitzgeorge RB, Dennis PJ, Keevil CW. Influence of iron-limited continuous culture on physiology and virulence of Legionella pneumophila. Infect Immun 1995; 63:4224-30. [PMID: 7591051 PMCID: PMC173600 DOI: 10.1128/iai.63.11.4224-4230.1995] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A virulent strain of Legionella pneumophila serogroup 1, subgroup Pontiac, was grown in continuous culture at a constant growth rate under iron-replete and iron-limited conditions. Iron limitation was achieved by the removal of ferrous sulfate and hemin from the chemically defined medium. Residual contaminating iron, 0.45 microM, was sufficient to support iron-limited growth. Typical iron-replete cultures metabolized 3.3 microM iron. Serine provided the principal source of carbon and energy for both cultures, although iron-replete cultures also depleted a number of other amino acids. There was a 40% decrease in culture biomass under iron-restricted conditions. Iron limitation did not significantly affect carbohydrate metabolism, with the molar growth yield for carbon (Ycarbon) comparable for both cultures. However, under iron-limited conditions a sixfold increase in Yiron correlated with a significant decrease in the iron content of the biomass, as the culture utilized the available iron more efficiently. Highly pleomorphic iron-replete cultures became uniform cultures of short fine rods when adapted to iron-deficient conditions. In addition to the morphological and physiological changes, iron limitation had a critical effect on culture virulence. The virulence of this strain was significantly (P < 0.05) reduced when the culture was subjected to iron-limited conditions. This phenomenon was reversible, with a significant increase in culture virulence upon reversion to iron-replete conditions. When compared in an in vitro macrophage assay, the number of culturable avirulent iron-limited cells located intracellularly after infection was significantly lower than for the virulent replete and control cultures. These results further support the role of environmental parameters in regulating the virulence of L. pneumophila.
Collapse
Affiliation(s)
- B W James
- Research Division, Centre for Applied Microbiology & Research, Salisbury, Wiltshire, United Kingdom
| | | | | | | | | |
Collapse
|
8
|
Buchmeier NA, Libby SJ, Xu Y, Loewen PC, Switala J, Guiney DG, Fang FC. DNA repair is more important than catalase for Salmonella virulence in mice. J Clin Invest 1995; 95:1047-53. [PMID: 7883952 PMCID: PMC441439 DOI: 10.1172/jci117750] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Pathogenic microorganisms possess antioxidant defense mechanisms for protection from reactive oxygen metabolites such as hydrogen peroxide (H2O2), which are generated during the respiratory burst of phagocytic cells. These defense mechanisms include enzymes such as catalase, which detoxify reactive oxygen species, and DNA repair systems which repair damage resulting from oxidative stress. To determine the relative importance of these two potentially protective defense mechanisms against oxidative stress encountered by Salmonella during infection of the host, a Salmonella typhimurium double mutant unable to produce either the HPI or HPII catalase was constructed, and compared with an isogenic recA mutant deficient in DNA repair. The recA mutant was hypersusceptible to H2O2 at low cell densities in vitro, while the catalase mutant was more susceptible to high H2O2 concentrations at high cell densities. The catalase mutant was found to be resistant to macrophages and retained full murine virulence, in contrast to the recA mutant which previously was shown to be macrophage-sensitive and attenuated in mice. These observations suggest that Salmonella is subjected to low concentrations of H2O2 while at relatively low cell density during infection, conditions requiring an intact DNA repair system but not functional catalase activity.
Collapse
Affiliation(s)
- N A Buchmeier
- Department of Medicine, University of Colorado Health Sciences Center, Denver 80262
| | | | | | | | | | | | | |
Collapse
|
9
|
Kura F, Suzuki K, Watanabe H, Akamatsu Y, Amano F. Difference in Legionella pneumophila growth permissiveness between J774.1 murine macrophage-like JA-4 cells and lipopolysaccharide (LPS)-resistant mutant cells, LPS1916, after stimulation with LPS. Infect Immun 1994; 62:5419-23. [PMID: 7960121 PMCID: PMC303283 DOI: 10.1128/iai.62.12.5419-5423.1994] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
To elucidate the role of the oxidative burst in macrophage resistance to Legionella infection, we examined a murine macrophage-like cell line, J774.1, for permissiveness to Legionella growth, using a mutant that has a selective defect in the oxidative burst after lipopolysaccharide (LPS) stimulation. Legionella pneumophila serogroup 1 was infected into J774.1 monolayers, and then the extent of bacterial growth was estimated by a CFU assay. Both the parental cell line, JA-4, and the LPS-resistant mutant, LPS1916, were permissive for Legionella growth but became nonpermissive after pretreatment with gamma interferon. However, pretreatment of LPS1916 cells with LPS failed to inhibit bacterial growth, although LPS-treated JA-4 cells exhibited inhibited multiplication of the bacteria. The bacterial growth inhibition in JA-4 and mutant LPS1916 cells was correlated with the extent of the oxidative burst in the cells, as judged by cytochrome c reduction but not nitrite production. Neither transferrin receptor expression nor the iron content in JA-4 and LPS1916 cells, with or without LPS treatment, was correlated with suppression of Legionella growth. These results suggest that the restriction of Legionella growth in J774.1 cells is due to a bactericidal effect of the oxidative burst rather than reduction of the iron supply to the intracellular bacteria and that the effectors are reactive oxygen intermediates and not reactive nitrogen intermediates.
Collapse
Affiliation(s)
- F Kura
- Department of Bacteriology, National Institute of Health, Tokyo, Japan
| | | | | | | | | |
Collapse
|
10
|
RECHNITZER CATHERINE, BANGSBORG JETTEM, SHAND GEOFFREYH. Effect ofLegionella pneumophilasonicate on killing ofListeria monocytogenesby human polymorphonuclear neutrophils and monocytes. APMIS 1993. [DOI: 10.1111/j.1699-0463.1993.tb00108.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Tully M, Williams A, Fitzgeorge RB. Transposon mutagenesis in Legionella pneumophila. II.--Mutants exhibiting impaired intracellular growth within cultured macrophages and reduced virulence in vivo. Res Microbiol 1992; 143:481-8. [PMID: 1333092 DOI: 10.1016/0923-2508(92)90094-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Transposon Tn5 mutants of L. pneumophila were isolated and screened for loss of virulence-associated characteristics. Three mutants were found with normal ability to produce putative pathogenicity determinants and to be endocytosed by guinea pig alveolar macrophages in vitro but with a greatly reduced ability to multiply within them. These mutants showed considerable loss of virulence in an authentic animal model of the pneumonia.
Collapse
Affiliation(s)
- M Tully
- Division of Pathology, PHLS Centre for Applied Microbiology and Research, Porton Down, Salisbury, UK
| | | | | |
Collapse
|
12
|
Rajagopalan-Levasseur P, Dournon E, Vilde JL, Pocidalo JJ. Differences in the respiratory burst of human polymorphonuclear leukocytes induced by virulent and avirulent Legionella pneumophila serogroup 1. JOURNAL OF BIOLUMINESCENCE AND CHEMILUMINESCENCE 1992; 7:109-16. [PMID: 1598846 DOI: 10.1002/bio.1170070203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Two strains of Legionella pneumophila of different virulence were examined for their influence on the metabolic oxidative activity of human polymorphonuclear leukocytes. The leukocytes exhibited decreased rates of oxygen consumption and diminished chemiluminescence activity following phagocytosis of a virulent strain of L. pneumophila serogroup 1. In contrast, phagocytosis of its multipassaged derivative rendered avirulent, was accompanied by increased rates of both oxygen consumption and chemiluminescence activity. Although no differences were observed in oxygen uptake induced by the virulent legionellae compared to leukocytes at rest, statistically significant differences were observed in the chemiluminescence responses. These observations were not unexpected, since the luminol-enhanced chemiluminescence assay, is more sensitive than the oxygen uptake assay. In spite of decreased metabolic activity of PMN in the presence of virulent legionellae, electron microscope studies showed higher numbers of intracellular L. pneumophila than the avirulent subtype. Thus, virulent and avirulent L. pneumophila can be differentiated on the basis of oxygen consumption and chemiluminescence assays.
Collapse
Affiliation(s)
- P Rajagopalan-Levasseur
- Institut National de la Santé et de la Recherche Médicale, U 13, Hôpital Claude Bernard, Paris VII, Université Paris, France
| | | | | | | |
Collapse
|
13
|
Abstract
Whereas bacteria in the genus Legionella have emerged as relatively frequent causes of pneumonia, the mechanisms underlying their pathogenicity are obscure. The legionellae are facultative intracellular pathogens which multiply within the phagosome of mononuclear phagocytes and are not killed efficiently by polymorphonuclear leukocytes. The functional defects that might permit the intracellular survival of the legionellae have remained an enigma until recently. Phagosome-lysosome fusion is inhibited by a single strain (Philadelphia 1) of Legionella pneumophila serogroup 1, but not by other strains of L. pneumophila or other species. It has been found that following the ingestion of Legionella organisms, the subsequent activation of neutrophils and monocytes in response to both soluble and particulate stimuli is profoundly impaired and the bactericidal activity of these cells is attenuated, suggesting that Legionella bacterial cell-associated factors have an inhibitory effect on phagocyte activation. Two factors elaborated by the legionellae which inhibit phagocyte activation have been described. First, the Legionella (cyto)toxin blocks neutrophil oxidative metabolism in response to various agonists by an unknown mechanism. Second, L. micdadei bacterial cells contain a phosphatase which blocks superoxide anion production by stimulated neutrophils. The Legionella phosphatase disrupts the formation of critical intracellular second messengers in neutrophils. In addition to the toxin and phosphatase, several other moieties that may serve as virulence factors by promoting cell invasion or intracellular survival and multiplication are elaborated by the legionellae. Molecular biological studies show that a cell surface protein named Mip is necessary for the efficient invasion of monocytes. A possible role for a Legionella phospholipase C as a virulence factor is still largely theoretical. L. micdadei contains an unusual protein kinase which catalyzes the phosphorylation of eukaryotic substrates, including phosphatidylinositol and tubulin. Since the phosphorylation of either phosphatidylinositol or tubulin might compromise phagocyte activation and bactericidal functions, this enzyme may well be a virulence factor. Administration of the L. pneumophila exoprotease induces lesions resembling those of Legionella pneumonia and kills guinea pigs, suggesting that this protein plays a role in the pathogenesis of legionellosis. However, recent work with a genetically engineered strain has convincingly shown that the protease is not necessary for intracellular survival or virulence. As might be expected with a complex process like intracellular parasitism, it appears that the capability of Legionella strains to invade and multiply in host phagocytes is multifactorial and that no single moiety which is responsible for the virulence phenotype will be found.
Collapse
Affiliation(s)
- J N Dowling
- Department of Medicine, University of Pittsburgh School of Medicine, Pennsylvania 15261
| | | | | |
Collapse
|
14
|
Rechnitzer C, Kharazmi A. Effect of Legionella pneumophila cytotoxic protease on human neutrophil and monocyte function. Microb Pathog 1992; 12:115-25. [PMID: 1584005 DOI: 10.1016/0882-4010(92)90114-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The extracellular metalloprotease of Legionella pneumophila, also called tissue-destructive protease or major secretory protein, has been proposed as one of the virulence factors of this organism. Considering the decisive role played by the phagocytic cells in host defense against Legionella infection, we investigated the effect of this protease on the function of human neutrophils and monocytes. L. pneumophila protease inhibited the chemotactic response of neutrophils to F-Met-Leu-Phe and zymosan-activated serum in a concentration-dependent and heat-labile manner. A direct effect of the protease on the chemotactic activity of neutrophils was demonstrated by the continued inhibition of neutrophil chemotaxis when the protease was removed following pre-incubation of the cells. In contrast, the enzyme had no effect on monocyte chemotaxis. The protease inhibited, also in a concentration-dependent and heat-labile manner, the binding of F-Met-Leu-Phe to both cell types. Neutrophil and monocyte oxidative burst response, as measured by superoxide release and chemiluminescence response, was not significantly affected by the enzyme. A slight enhancement of PMA-stimulated superoxide release was induced by the protease in both cell types. Lastly, the protease inhibited the killing of Listeria monocytogenes by neutrophils or monocytes. Inhibition of Listeria killing was concentration-dependent, heat-labile, and did not require the presence of the enzyme in the bactericidal assay. The inhibitory activity of L. pneumophila protease on neutrophil chemotaxis and on the listericidal activity of human neutrophils and monocytes demonstrated in this study provides evidence for a role of this enzyme in the pathogenesis of Legionnaires' disease.
Collapse
Affiliation(s)
- C Rechnitzer
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| | | |
Collapse
|
15
|
Abstract
In the summer of 1976, a mysterious epidemic of fatal respiratory disease in Philadelphia launched an intensive investigation that resulted in the definition of a new family of pathogenic bacteria, the Legionellaceae. In retrospect, members of the family had been isolated from clinical specimens as early as 1943. Unsolved epidemics of acute respiratory disease dating to the 1950s were subsequently attributed to the newly described pathogens. In the intervening years, the Legionellaceae have been firmly established as important causes of sporadic and epidemic respiratory disease. The sources of the infecting bacteria are environmental, and geographic variation in the frequency of infection has been documented. Airborne dissemination of bacteria from cooling towers and evaporative condensers has been responsible for some epidemics, but potable water systems are perhaps more important sources. The mode of transmission from drinking water is unclear. The Legionellaceae are gram-negative, facultative, intracellular pathogens. The resident alveolar macrophage, usually an effective antibacterial defense, is the primary site of growth. Cell-mediated immunity appears to be the most important immunological defense; the role of humoral immunity is less clear. Erythromycin remains the antibiotic of choice for therapy of infected patients, but identification and eradication of environmental sources are also essential for the control of infection.
Collapse
Affiliation(s)
- W C Winn
- Department of Pathology, University of Vermont, College of Medicine, Burlington 05405
| |
Collapse
|