1
|
Flook M, Rojano E, Gallego-Martinez A, Escalera-Balsera A, Perez-Carpena P, Moleon MDC, Gonzalez-Aguado R, Rivero de Jesus V, Domínguez-Durán E, Frejo L, G Ranea JA, Lopez-Escamez JA. Cytokine profiling and transcriptomics in mononuclear cells define immune variants in Meniere Disease. Genes Immun 2024; 25:124-131. [PMID: 38396174 PMCID: PMC11023934 DOI: 10.1038/s41435-024-00260-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024]
Abstract
Meniere Disease (MD) is a chronic inner ear disorder characterized by vertigo attacks, sensorineural hearing loss, tinnitus, and aural fullness. Extensive evidence supporting the inflammatory etiology of MD has been found, therefore, by using transcriptome analysis, we aim to describe the inflammatory variants of MD. We performed Bulk RNAseq on 45 patients with definite MD and 15 healthy controls. MD patients were classified according to their basal levels of IL-1β into 2 groups: high and low. Differentially expression analysis was performed using the ExpHunter Suite, and cell type proportion was evaluated using the estimation algorithms xCell, ABIS, and CIBERSORTx. MD patients showed 15 differentially expressed genes (DEG) compared to controls. The top DEGs include IGHG1 (p = 1.64 × 10-6) and IGLV3-21 (p = 6.28 × 10-3), supporting a role in the adaptative immune response. Cytokine profiling defines a subgroup of patients with high levels of IL-1β with up-regulation of IL6 (p = 7.65 × 10-8) and INHBA (p = 3.39 × 10-7) genes. Transcriptomic data from peripheral blood mononuclear cells support a proinflammatory subgroup of MD patients with high levels of IL6 and an increase in naïve B-cells, and memory CD8+ T cells.
Collapse
Affiliation(s)
- Marisa Flook
- Otology and Neurotology Group CTS495, Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, ibs.GRANADA, Granada, Universidad de Granada, Granada, Spain.
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain.
- UCL Ear Institute, University College London, London, UK.
| | - Elena Rojano
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Malaga, Malaga, Spain
- Institute of Biomedical Research in Malaga (IBIMA-Plataforma BIONAND), Malaga, Spain
| | - Alvaro Gallego-Martinez
- Otology and Neurotology Group CTS495, Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, ibs.GRANADA, Granada, Universidad de Granada, Granada, Spain
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain
| | - Alba Escalera-Balsera
- Otology and Neurotology Group CTS495, Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, ibs.GRANADA, Granada, Universidad de Granada, Granada, Spain
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain
| | - Patricia Perez-Carpena
- Otology and Neurotology Group CTS495, Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, ibs.GRANADA, Granada, Universidad de Granada, Granada, Spain
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain
- Department of Otolaryngology, Instituto de Investigación Biosanitaria, ibs.Granada, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - M Del Carmen Moleon
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain
- Department of Otolaryngology, Hospital Universitario San Cecilio, Granada, Spain
| | - Rocio Gonzalez-Aguado
- Department of Otorhinolaryngology, Hospital Universitario Marques de Valdecilla, Santander, Spain
| | | | - Emilio Domínguez-Durán
- Unidad de Gestión Clínica de Otorrinolaringología, Hospital Universitario Virgen Macarena, Sevilla, Spain
| | - Lidia Frejo
- Otology and Neurotology Group CTS495, Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, ibs.GRANADA, Granada, Universidad de Granada, Granada, Spain
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain
- Meniere Disease Neuroscience Research Program, Faculty of Medicine & Health, School of Medical Sciences, The Kolling Institute, University of Sydney, Sydney, NSW, Australia
| | - Juan A G Ranea
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Malaga, Malaga, Spain
- Institute of Biomedical Research in Malaga (IBIMA-Plataforma BIONAND), Malaga, Spain
- Centro de Investigación Biomedica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 29029, Madrid, Spain
- Spanish National Bioinformatics Institute (INB/ELIXIR-ES), 08034, Barcelona, Spain
| | - Jose Antonio Lopez-Escamez
- Otology and Neurotology Group CTS495, Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, ibs.GRANADA, Granada, Universidad de Granada, Granada, Spain.
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain.
- Meniere Disease Neuroscience Research Program, Faculty of Medicine & Health, School of Medical Sciences, The Kolling Institute, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
2
|
Wu D, Liu B, Wu Y, Wang Y, Sun J, Yang J, Duan J, Liu G, Cao K, Zhang Y, Rong P. Meniere Disease treated with transcutaneous auricular vagus nerve stimulation combined with betahistine Mesylate: A randomized controlled trial. Brain Stimul 2023; 16:1576-1584. [PMID: 37838094 DOI: 10.1016/j.brs.2023.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 09/05/2023] [Accepted: 10/03/2023] [Indexed: 10/16/2023] Open
Abstract
BACKGROUND Meniere Disease is a clinical condition defined by hearing loss, tinnitus, and aural fullness symptoms, there are currently no any medications approved for its treatment. OBJECTIVE To determine whether taVNS as an adjunctive therapy could relieve symptoms and improve the quality of life in patients with Meniere disease. METHODS In this Single-center, single blind, randomized trial, participants were assigned to transcutaneous auricular vagus nerve stimulation (taVNS) group and sham taVNS group. The primary outcome measures comprised Tinnitus Handicap Inventory, Dizziness Handicap Inventory, Pure Tone Auditory, Visual analogue scale of aural fullness. Secondary outcome measures comprised the 36-Item Short Form Health Survey, video head impulse test, and the caloric test. RESULTS After 12 weeks, the THI (-11.00, 95%CI, -14.87 to -7.13; P < 0.001), DHI (-47.26, 95%CI, -50.23 to -44.29; P < 0.001), VAS of aural fullness (-2.22, 95%CI, -2.95 to -1.49; P<0.01), and Pure Tone Thresholds (-7.07, 95%CI, -9.07 to -5.06; P<0.001) were significantly differed between the two groups. In addition, SF36(14.72, 95%CI, 11.06 to 18.39; P < 0.001), vHIT (RD, 0.26, 95 % CI, -0.44 to -0.08, RR, 0.43, 95 % CI, 0.22 to 0.83, P < 0.01), and the caloric test (RD, -0.24, 95 % CI, -0.43 to -0.04, RR, 0.66, 95 % CI, 0.44 to 0.95, P = 0.02) have significant difference between two group, respectively. CONCLUSIONS These findings suggest that taVNS combined with Betahistine Mesylate relieve symptoms and improve the quality of life for patients with Meniere Disease. taVNS can be considered an adjunctive therapy in treatment of Meniere Disease. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT05328895.
Collapse
Affiliation(s)
- Dong Wu
- Department of Traditional Chinese Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Bo Liu
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Beijing Institute of Otolaryngology, Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing, China
| | - Yunqing Wu
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yu Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jingyi Sun
- Department of Oncology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jun Yang
- Beijing Institute of Otolaryngology, Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing, China
| | - Jinping Duan
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Gang Liu
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Kai Cao
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yi Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Beijing Institute of Otolaryngology, Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing, China
| | - Peijing Rong
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
3
|
Umemoto KK, Tawk K, Mazhari N, Abouzari M, Djalilian HR. Management of Migraine-Associated Vestibulocochlear Disorders. Audiol Res 2023; 13:528-545. [PMID: 37489383 PMCID: PMC10366928 DOI: 10.3390/audiolres13040047] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/03/2023] [Accepted: 07/12/2023] [Indexed: 07/26/2023] Open
Abstract
Migraine is a chronic neurological disorder that frequently coexists with different vestibular and cochlear symptoms (sudden hearing loss, tinnitus, otalgia, aural fullness, hyperacusis, dizziness, imbalance, and vertigo) and disorders (recurrent benign positional vertigo, persistent postural perceptual dizziness, mal de debarquement, and Menière's disease). Despite evidence of an epidemiological association and similar pathophysiology between migraine and these vestibulocochlear disorders, patients suffering from migraine-related symptoms are usually underdiagnosed and undertreated. Current migraine treatment options have shown success in treating vestibulocochlear symptoms. Lifestyle and dietary modifications (reducing stress, restful sleep, avoiding migraine dietary triggers, and avoiding starvation and dehydration) and supplements (vitamin B2 and magnesium) offer effective first-line treatments. Treatment with migraine prophylactic medications such as tricyclic antidepressants (e.g., nortriptyline), anticonvulsants (e.g., topiramate), and calcium channel blockers (e.g., verapamil) is implemented when lifestyle and dietary modifications are not sufficient in improving a patient's symptoms. We have included an algorithm that outlines a suggested approach for addressing these symptoms, taking into account our clinical observations. Greater recognition and understanding of migraine and its related vestibular and cochlear symptoms are needed to ensure the appropriate diagnosis and treatment of affected patients.
Collapse
Affiliation(s)
- Kayla K. Umemoto
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA
| | - Karen Tawk
- Division of Neurotology and Skull Base Surgery, Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, CA 92697, USA
| | - Najva Mazhari
- Division of Neurotology and Skull Base Surgery, Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, CA 92697, USA
| | - Mehdi Abouzari
- Division of Neurotology and Skull Base Surgery, Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, CA 92697, USA
| | - Hamid R. Djalilian
- Division of Neurotology and Skull Base Surgery, Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, CA 92697, USA
- Department of Biomedical Engineering, University of California, Irvine, CA 92617, USA
| |
Collapse
|
4
|
Zhang S, Guo Z, Tian E, Liu D, Wang J, Kong W. Meniere disease subtyping: the direction of diagnosis and treatment in the future. Expert Rev Neurother 2022; 22:115-127. [PMID: 35057670 DOI: 10.1080/14737175.2022.2030221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Sulin Zhang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Zhaoqi Guo
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - E Tian
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Dan Liu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Jun Wang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Weijia Kong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
- Key Laboratory of Neurological Disorders of Education Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| |
Collapse
|
5
|
Guajardo-Vergara C, Suárez-Vega V, Dominguez P, Manrique-Huarte R, Arbizu L, Pérez-Fernández N. Endolymphatic hydrops in the unaffected ear of patients with unilateral Ménière's disease. Eur Arch Otorhinolaryngol 2022; 279:5591-5600. [PMID: 35578137 PMCID: PMC9649467 DOI: 10.1007/s00405-022-07412-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/19/2022] [Indexed: 02/07/2023]
Abstract
PURPOSE Current studies show that frequency tuning modification is a good marker for the detection of endolymphatic hydrops (EH) employing magnetic resonance imaging (MRI) in patients with Ménière's disease (MD). The purpose of the present study is to analyze the auditory and vestibular function with audiometric and vestibular-evoked myogenic potentials (VEMP) responses, respectively, in both the affected and unaffected ears of patients with unilateral MD using MRI as diagnostic support for the degree of EH. METHODS We retrospectively reviewed the medical records of 76 consecutive patients with unilateral definite MD (age 55 (28-75); 39 women, 37 men). MRI was used through intravenous gadolinium administration, audiometry, and VEMPs. Functional tests were performed up to a week after the MRI. All were followed up one year after imaging utilizing clinical, auditory, and vestibular testing to rule out bilateral involvement. RESULTS In the unaffected ear, the mean pure-tone average is normal even in cases with hydrops and, for a similar severity of hydrops is significantly lower than in the affected ear. Significant differences for the amplitude of the response at 0.5 kHz, at 1 kHz between the affected and unaffected ears were found to be lower in the affected ears. The relative amplitude ratio (1 Kz-0.5 kHz) was significantly lower in the affected ear and in the case of the oVEMP response depends on the degree of EH. The response in the unaffected ear was not modified by the presence or the degree of hydrops. CONCLUSION In the unaffected ear, hydrops is not associated with hearing deterioration. For a similar degree of hydrops, hearing loss is significantly greater in the affected ear. The endolymphatic hydrops in the vestibule induces a frequency bias in the VEMP response only in the affected ear and not in the unaffected ear. Because of these findings we consider that hydrops does not represent an active disorder in the unaffected ear.
Collapse
Affiliation(s)
- Carlos Guajardo-Vergara
- Department of Otorhinolaryngology, Clínica Universidad de Navarra, Pamplona, Spain ,Escuela de Fonoaudiología, Universidad Austral de Chile, Sede Puerto Montt, Los Lagos, Chile
| | | | - Pablo Dominguez
- Department of Radiology, Clínica Universidad de Navarra, Pamplona, Spain
| | | | - Lorea Arbizu
- Department of Otorhinolaryngology, Complejo Hospitalario de Navarra, Pamplona, Spain
| | - Nicolás Pérez-Fernández
- Department of Otorhinolaryngology, Clínica Universidad de Navarra, Pamplona, Spain ,Department of Otorhinolaryngology, Clínica Universidad de Navarra, Marquesado de Santa Marta 1, 28027 Madrid, Spain
| |
Collapse
|
6
|
Samaha NL, Almasri MM, Johns JD, Hoa M. Hearing restoration and the stria vascularis: evidence for the role of the immune system in hearing restoration. Curr Opin Otolaryngol Head Neck Surg 2021; 29:373-384. [PMID: 34459799 PMCID: PMC9047557 DOI: 10.1097/moo.0000000000000738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW This article reviews the current literature regarding the pathogenesis of immune-mediated sensorineural hearing loss, utilizes previously published single-nucleus transcriptional profiles to characterize cytokine and cytokine receptor expression in the adult stria vascularis cell types to support immune system interaction with the stria vascularis and reviews the current literature on immunomodulatory agents currently being used for hearing-restoration treatment. RECENT FINDINGS The literature review highlights recent studies that elucidate many cytokines and immune markers, which have been linked to various immune-mediated disease processes that have been observed with sensorineural hearing loss within the stria vascularis and highlights recent publications studying therapeutic targets for these pathways. SUMMARY This review highlights the current literature regarding the pathogenesis of immune-mediated hearing loss. The role of cochlear structures in human temporal bones from patients with immune-mediated sensorineural hearing loss are highlighted, and we review cytokine signalling pathways relevant to immune-mediated sensorineural hearing loss and localize genes encoding both cytokine and cytokine receptors involved in these pathways. Finally, we review immunomodulatory therapeutics in light of these findings and point to opportunities for the application of novel therapeutics by targeting these signalling pathways.
Collapse
Affiliation(s)
- Nadia L. Samaha
- Georgetown University School of Medicine, Washington, DC, United States
| | | | - J. Dixon Johns
- Department of Otolaryngology-Head and Neck Surgery, Georgetown University School of Medicine, MedStar Georgetown University Hospital, Washington, DC, United States
| | - Michael Hoa
- Department of Otolaryngology-Head and Neck Surgery, Georgetown University School of Medicine, MedStar Georgetown University Hospital, Washington, DC, United States
- Auditory Development and Restoration Program, National Institutes on Deafness and Other Communication Disorders, NIH, Bethesda, MD, United States
| |
Collapse
|
7
|
Gu S, Olszewski R, Nelson L, Gallego-Martinez A, Lopez-Escamez JA, Hoa M. Identification of Potential Meniere's Disease Targets in the Adult Stria Vascularis. Front Neurol 2021; 12:630561. [PMID: 33613436 PMCID: PMC7894210 DOI: 10.3389/fneur.2021.630561] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/12/2021] [Indexed: 12/13/2022] Open
Abstract
The stria vascularis generates the endocochlear potential and is involved in processes that underlie ionic homeostasis in the cochlear endolymph, both which play essential roles in hearing. The histological hallmark of Meniere's disease (MD) is endolymphatic hydrops, which refers to the bulging or expansion of the scala media, which is the endolymph-containing compartment of the cochlea. This histologic hallmark suggests that processes that disrupt ion homeostasis or potentially endocochlear potential may underlie MD. While treatments exist for vestibular symptoms related to MD, effective therapies for hearing fluctuation and hearing loss seen in MD remain elusive. Understanding the potential cell types involved in MD may inform the creation of disease mouse models and provide insight into underlying mechanisms and potential therapeutic targets. For these reasons, we compare published datasets related to MD in humans with our previously published adult mouse stria vascularis single-cell and single-nucleus RNA-Seq datasets to implicate potentially involved stria vascularis (SV) cell types in MD. Finally, we provide support for these implicated cell types by demonstrating co-expression of select candidate genes for MD within SV cell types.
Collapse
Affiliation(s)
- Shoujun Gu
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Rafal Olszewski
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Lacey Nelson
- Department of Otolaryngology-Head and Neck Surgery, Georgetown University School of Medicine, Washington, DC, United States
| | - Alvaro Gallego-Martinez
- Otology and Neurotology Group CTS495, Department of Genomic Medicine, Centre for Genomics and Oncological Research, Pfizer/Universidad de Granada/Junta de Andalucía (GENYO), Granada, Spain
| | - Jose Antonio Lopez-Escamez
- Otology and Neurotology Group CTS495, Department of Genomic Medicine, Centre for Genomics and Oncological Research, Pfizer/Universidad de Granada/Junta de Andalucía (GENYO), Granada, Spain
- Department of Otolaryngology, Instituto de Investigación Biosanitaria ibs.GRANADA, Hospital Universitario Virgen de las Nieves, Granada, Spain
- Division of Otolaryngology, Department of Surgery, University of Granada, Granada, Spain
| | - Michael Hoa
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health (NIH), Bethesda, MD, United States
- Department of Otolaryngology-Head and Neck Surgery, Georgetown University School of Medicine, Washington, DC, United States
| |
Collapse
|
8
|
Gu S, Olszewski R, Taukulis I, Wei Z, Martin D, Morell RJ, Hoa M. Characterization of rare spindle and root cell transcriptional profiles in the stria vascularis of the adult mouse cochlea. Sci Rep 2020; 10:18100. [PMID: 33093630 PMCID: PMC7581811 DOI: 10.1038/s41598-020-75238-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/12/2020] [Indexed: 12/20/2022] Open
Abstract
The stria vascularis (SV) in the cochlea generates and maintains the endocochlear potential, thereby playing a pivotal role in normal hearing. Knowing transcriptional profiles and gene regulatory networks of SV cell types establishes a basis for studying the mechanism underlying SV-related hearing loss. While we have previously characterized the expression profiles of major SV cell types in the adult mouse, transcriptional profiles of rare SV cell types remained elusive due to the limitation of cell capture in single-cell RNA-Seq. The role of these rare cell types in the homeostatic function of the adult SV remain largely undefined. In this study, we performed single-nucleus RNA-Seq on the adult mouse SV in conjunction with sample preservation treatments during the isolation steps. We distinguish rare SV cell types, including spindle cells and root cells, from other cell types, and characterize their transcriptional profiles. Furthermore, we also identify and validate novel specific markers for these rare SV cell types. Finally, we identify homeostatic gene regulatory networks within spindle and root cells, establishing a basis for understanding the functional roles of these cells in hearing. These novel findings will provide new insights for future work in SV-related hearing loss and hearing fluctuation.
Collapse
Affiliation(s)
- Shoujun Gu
- Auditory Development and Restoration Program, National Institutes on Deafness and Other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, 35 Convent Dr., Room 1F-226, Bethesda, MD, 20892, USA
| | - Rafal Olszewski
- Auditory Development and Restoration Program, National Institutes on Deafness and Other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, 35 Convent Dr., Room 1F-226, Bethesda, MD, 20892, USA
| | - Ian Taukulis
- Auditory Development and Restoration Program, National Institutes on Deafness and Other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, 35 Convent Dr., Room 1F-226, Bethesda, MD, 20892, USA
| | - Zheng Wei
- Biomedical Research Informatics Office, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD, 20892, USA
| | - Daniel Martin
- Biomedical Research Informatics Office, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD, 20892, USA
| | - Robert J Morell
- Computational Biology and Genomics Core, National Institutes on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Michael Hoa
- Auditory Development and Restoration Program, National Institutes on Deafness and Other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, 35 Convent Dr., Room 1F-226, Bethesda, MD, 20892, USA.
| |
Collapse
|